Landscape and Urban Planning 253 (2025) 105187

Landscape and
Urban Planning

Contents lists available at ScienceDirect

Landscape and Urban Planning

o %

ELSEVIER

journal homepage: www.elsevier.com/locate/landurbplan

Sub-parcel scale analysis is needed to capture socially-driven canopy cover
change in Baltimore, MD

Dexter H. Locke ™", Alessandro Ossola ™, John Paul Schmit“, J. Morgan Grove *

2 USDA Forest Service, Northern Research Station, Baltimore Field Station, Suite 350, 5523 Research Park Drive, Baltimore, MD 21228, USA
b Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA

€ School of Agriculture, Food and Ecosystem Science, University of Melbourne, VIC, Australia

4 National Capital Region Inventory and Monitoring Network, National Park Service, 4598 MacArthur Blvd, Washington DC 20007, USA

HIGHLIGHTS

e Tree canopy area is seldom distributed equitably across social groups, space and time.
e Market segmentation based on lifestyle best predicts residential tree canopy.

e Tree canopy is greater in backyards than front, and the gap varies by social groups.

e Tree canopy change did not vary by segments or front yard versus backyard.

o Long-term tree canopy expectations may consider drivers of gain, loss and persistence.
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Urban tree canopy (UTC) cover is rarely distributed equitably across social groups, space, and time. Over the past
20 years, research on the social, spatial, and temporal dynamics of UTC has grown considerably as municipalities
adopt ambitious tree canopy cover goals. Yet less is known about how these three dimensions of tree canopy
intersect. This paper brings these research areas together by examining i) which sets of social variables-popu-
lation density, socioeconomic status, or lifestyle-are associated with UTC cover on residential lands, ii) how
those relationships vary from front to back yard, and iii) how those relationships are associated with tree canopy
cover changes in Baltimore, MD from 2013 to 2018, to more wholistically understand UTC. Socially, population
density and social stratification predict tree canopy cover on residential lands, but not as well as lifestyle and life
stage factors. More detailed and finer-grain social categories perform best. Spatially, models that explicitly
separate front and backyards fit the data better than all-residential statistical models. Ignoring the front yard vs
back yard distinction may hinder future theory development, limit the generalizability of empirical research
findings, and prevent managers from realizing their canopy goals. Temporally, UTC across residential yards had a
positive, though not significant, change likely from the relatively short period (5 y) considered. A fruitful next
step could be to model how much planting, maintenance, and loss minimization is needed to achieve the city’s
40 % canopy goal with various scenarios for mortality, longevity, and removal over several timesteps.

1. Introduction factors are associated with the inequitable spatial distribution of tree

canopy cover (Schwarz et al., 2015; Troy et al., 2007); b) the relation-

Urban tree canopy is rarely distributed equitably across social
groups, space, and time. Over the past 20 years, research on the social,
spatial, and temporal dynamics of urban tree canopy has developed
among a number of dimensions: a) socioeconomic and demographic

* Corresponding author.

ship between socioeconomic and demographic factors and tree canopy
covers varies by public versus private lands (i.e. trees in the public right
of way and parks in contrast to privately owned trees in residential
areas) (Landry & Chakraborty, 2009; Troy et al., 2007); c) within
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residential areas, there can be significant differences in vegetation
including tree canopy cover between front and backyards (Locke, Avo-
lio, et al., 2018; Ossola et al., 2019a; b); and d) there are temporal
legacies, lags, and contemporary drivers of canopy change (Boone et al.,
2010; Locke, Hall, et al., 2021). Finally, and more practically, tracking
canopy change in relation to social, economic, and environmental
drivers can help cities achieve their urban tree canopy goals and reduce
inequity. The purpose of this paper is to bring a number of these research
areas together by comprehensively examining 1) social: which sets of
social variables—population density, socioeconomic status, and/or life-
style/lifestage—are associated with tree canopy cover on residential
lands, 2) spatial: how those relationships vary from front to back yard,
and 3) temporal: how those relationships are associated with contem-
porary tree canopy cover changes in Baltimore, MD from 2013 to 2018.

We focus on residential land because it is the predominant landuse in
most urban areas in the United States and contains most of the existing
tree canopy and opportunities for additional tree canopy (Locke, Grove,
et al., 2023). Residential lands are substantial, with approximately,
111,053,625 residential yards covering 646,337 km? (Lerman et al.,
2023) in the United States. We also focus on Baltimore City because out
of the 207 jurisdictions in the Chesapeake Bay watershed, only 26 (12.5
%) reported net increase in tree canopy, including Baltimore City (https
://chesapeaketrees.net/understand-your-canopy/). The social, spatial,
temporal approach (detailed next) in Baltimore could be instructive to
other locales in the watershed, or other places with similar dominance of
single-family homes with yards of varying size to examine the social and
spatial components of UTC change.

1.1. Social: Geodemographic market segments and urban tree canopy
(UTC)

Three social theories have been proposed to explain the spatial dis-
tribution of tree canopy cover on residential lands: population density,
social stratification and the luxury effect, and lifestyle behavior and the
ecology of prestige (Grove, Cadenasso, et al., 2006; Grove, Troy, et al.,
2006). Population density is presumed to affect the distribution of tree
canopy cover based on the assumption that built infrastructure displaces
land for trees and other vegetation (Marco et al., 2008; Smith et al.,
2005). Social stratification theory and the “luxury effect” have been
used to predict tree canopy patterns based upon relative power and in-
come differences among neighborhoods (Gerrish & Watkins, 2018;
Watkins & Gerrish, 2018). This relates not only to the ability of different
socio-economic groups to invest or attract investment in greening ini-
tiatives, but also their ability to move to neighborhoods with more tree
canopy cover (Hope et al., 2003; Martin et al., 2004). The third theory is
based upon lifestyle behaviors and an “ecology of prestige,” which refers
to the phenomenon in which household patterns of consumption and
expenditure on environmentally relevant goods and services are moti-
vated by group identity and perceptions of social status associated with
different lifestyles (Grove et al., 2014; Locke et al., 2016; Troy et al.,
2007; Zhou et al., 2009). This theory suggests that a household’s land
management decisions are influenced by its desire to uphold the prestige
of its community and outwardly express its membership in a given
lifestyle group (Grove et al., 2014; Locke et al., 2016; Troy et al., 2007;
Zhou et al., 2009). Members of different lifestyle groups have additional
motivations for different types of management, for example creating
play spaces for children.

Although these theories are distinct, they are linked methodologi-
cally because measures of population density and income and education
are incorporated into empirical characterizations of lifestyle groups with
continuous or categorical analyses (Bigsby et al., 2014; Grove et al.,
2014; Locke et al., 2016; Locke & Grove, 2016; Troy et al., 2007; Zhou
et al., 2009). Many geodemographic segmentations systems like PRIZM
and Tapestry (detailed below) are hierarchically organized, with a
coarse first level corresponding to urbanization, an intermediate level
with more groups corresponding to social stratification, and third and
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final level with the most segments corresponding to lifestyle/lifestage.

Studies show that statistical models of residential tree canopy cover
with population density, and social stratification, that also include
lifestyle and lifestage factors fit the data better than those without them
in several northeastern cities (Grove et al., 2014; Grove, Cadenasso,
et al., 2006; Grove, Troy, et al., 2006; Locke et al., 2016; Troy et al.,
2007). However similar analyses of tree canopy in Raleigh, NC suggest
urban morphology and parcel-level variables such as parcel size, de-
tached housing, and year built are better correlates of cover than block-
group level geodemographic variables (Bigsby et al., 2014). Social
groups operationalized via geodemography have also provided insights
into the spatial distribution of participation in tree planting programs.
Tree planting participation varies by lifestyle categories in Washington,
DC, and Baltimore, MD (Locke & Grove, 2016; Nguyen et al., 2017), but
not in Philadelphia, PA and New York City (Locke et al., 2013; 2014).
Tree canopy change varied by geodemographic market segment in
coastal Los Angeles from 2009 to 2014, and higher income areas had
more and more stable tree canopy (Locke et al., 2017).

1.2. Spatial: Front and backyards and UTC

Previous research in the US cities indicates the importance of
lifestyle-pertinent social norms affecting residential yard care
(Chowdhury et al., 2011; Cook et al., 2012; Harris et al., 2013; Robbins,
2012; Robbins et al., 2001; Robbins & Sharp, 2008). Whether motivated
by pride and joy of upholding the neighborhood aesthetic (and ecology
of prestige) or seeking to avoid negative judgement, shame, and even
ostracization in a neighborhood (the moral economy (Robbins, 2012;
Robbins et al., 2001; Robbins & Sharp, 2008)), perceived or real pres-
sures for conformity may lead people to change their landscaping.
Different neighborhoods may have different social norms, and neigh-
borhoods are comprised of different lifestyle groups. Since backyards are
often more secluded than more publicly-visible front yards, researchers
have examined the effect of social norms on backyards may also be
reduced - if not completely eliminated (Locke, Avolio, et al., 2018;
Locke, Roy Chowdhury, et al., 2018). As a consequence, the manage-
ment actions and associated outcomes like tree canopy cover are hy-
pothesized to be different between front and backyards.

The idea that there may be differences between front yard versus
back yard vegetation is not new. Vegetated areas of backyards in Syr-
acuse NY were 1.5-2.4 times larger, and there were 0.9-1.8 times as
much tree canopy than front yards (Richards et al., 1984). There were
more tree stems in backyards compared to front yards in Shorewood, WI,
a suburb of Milwaukee (Dorney et al., 1984). More recently, additional
evidence has emerged. Backyards in the greater Boston, MA metropol-
itan area are larger than front yards, have more tree canopy by area and
percent area (Ossola et al., 2019a), and that tree canopy forms larger
contiguous blocks that is more connected (Ossola et al., 2019b). In
Adelaide, Australia, backyards have almost as much tree canopy cover
as public rights of way with street trees, but on a percentage basis they
have the most tree canopy cover out of any land use, and cover ~23 % of
the entire study area (Ossola et al., 2021).

1.3. Temporal: Time and urban tree canopy

Trees are slow-growing and long-lived organisms. Historical, bio-
physical and social factors, and their interactions, can shape contem-
porary tree canopy cover (Roman et al., 2018). Present day-tree canopy
have been correlated with historic demographic data (Boone et al.,
2010; Clarke et al., 2013; Locke & Baine, 2014; Luck et al., 2009). Past
policies and practices can also be associated with current vegetation
cover. For instance, racial segregation policies and practices from the
1930 s correspond with vegetation cover (Nardone et al., 2021) and
contemporary tree canopy (Hoffman et al., 2020; Locke, Hall, et al.,
2021; Nowak et al., 2022).

In addition to long-term time horizons (5-50 years)(Roman et al.,
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2021), shorter time periods or near-term (5-10 years) have been
analyzed predominantly in US cities. The disparities in distributional
environmental injustice of tree canopy cover in Philadelphia worsened
from 2008 to 2018 (Foster et al., 2022). Similar patterns were found in
coastal Los Angeles from 2009 to 2014, where higher income areas had
more tree canopy and lost less (Locke et al., 2017). Changes in house-
hold income (increases or decreases) corresponded with tree canopy
gain in Washington, DC from 2006 to 2011 with consistently high-
income areas having more tree canopy and more persistent tree can-
opy (Chuang et al., 2017). Aside from extreme events like earthquakes
(Morgenroth et al., 2016; Staudhammer et al., 2011), development ap-
pears to be the largest factor associated with urban tree canopy losses
(Croeser et al., 2020; Ellis & Mathews, 2019; Guo et al., 2018; Hostetler
etal., 2013; Ossola & Hopton, 2018). It is less clear, however, how urban
tree canopy changes—gain, persistence, or loss—varies by social group
over near-term time periods (~5-10 years).

In this paper we focus on residential lands because they are the
predominant land use in urban areas. Despite what is already known
about the social, spatial, and temporal aspects of UTC individually, less
is known about how these three domains interact. The purpose is to
more comprehensively understand these three domains of UTC together.
We examine how tree canopy varies by social groups, across space with
front and backyards, and over time from 2013 to 2018, in Baltimore
City, MD. This paper asks:

1) Social: Which theory: population density (urbanicity), lifemode
(social stratification/luxury effect), or lifestyle/lifestage (prestige)
best predict the distribution of tree canopy cover on residential
lands?

2) Spatial: Does resolving parcels into front and backyards improve our
ability to predict, and therefore understand, tree canopy cover on
residential lands?

3) Temporal: How does residential tree canopy change vary by social
groups and front and back yard over time?

2. Methods
2.1. Study area

Baltimore City (39.2848101, —76.7030691) is located in the mid-
Atlantic region of the United States, and has a temperate climate.
Over the past 50 years, the city’s population has declined from nearly 1
million to ~570,000 people, while the surrounding counties have grown
to ~2.7 million people for the metropolitan region (US Census Bureau,
2023). Recently, the city has experienced a mix of decline, stabilization,
and redevelopment among its neighborhoods. Baltimore has a rich his-
tory of as a leader in urban ecology (Grove et al., 2015), and has a tree
canopy goal of 40 % (Nguyen et al., 2017). There are a number of active
urban forestry stewardship groups that vary from large, citywide orga-
nizations with full time paid staffs and 501(c)3 tax exemption status, to
neighborhood-specific volunteer groups (Sonti et al., 2023). TreeBalti-
more (https://www.treebaltimore.org/) is the City’s lead, municipal
umbrella organization which coordinates among NGOs, volunteers, and
agencies at various levels.

2.2. Data

2.2.1. Geodemography and Tapestry

Geodemographic analyses are well-suited to examining nested the-
ories about the distribution of urban tree canopy. Geodemographic
market segmentation is a family of spatial and statistical analyses that
classifies areas into categories based on who lives in that area, with the
underlying premise people within neighborhoods have some common
demographic, socioeconomic, and/or lifestyle characteristics (Troy,
1995). PRIZM (the Potential Rating Index for Zipcode Markets) and
Environmental Systems Research Institute’s (ESRI) Tapestry

Landscape and Urban Planning 253 (2025) 105187

segmentation are two commonly-used geodemographic datasets,
although there are several others, including A Classification of Resi-
dential Neighborhoods aka “ACORN” developed in the United Kingdom
(Charlton et al., 1985) and city- and use-specific classifications in the
UK, Canadian, and US cities (Corcoran et al., 2013; Delmelle, 2015;
2016; Delmelle & Rey, 2021; Tao et al., 2013). The United Kingdom has
been a hotbed for geodemography and an early adopter of the family of
techniques (R. Harris et al., 2005; Openshaw & Blake, 1995). However
geodemographic systems can be found in the Philippines (Ojo et al.,
2013), Nigeria (Ojo et al., 2010; Ojo & Ezepue, 2012), and guides for
creating local segmentations systems exist (Charlton et al., 1983), and
even with particular attention to developing countries (Ojo & Ezepue,
2011).

ESRI’s Tapestry geodemographic segmentation uses a non-spatial
cluster analysis of spatial data to categorize Census block groups
(ESRI, 2015). In other words, the attribute data are subjected to cluster
analyses, irrespective of their geographic location. Input data include
Census data, labor force participation from the Bureau of Labor Statis-
tics, housing information from the Federal Housings Finance Agency,
among others. Tapestry’s urbanization levels correspond to population
density, LifeMode maps on to social stratification, and the segment level
reflects lifestyle/lifestage. Tapestry data have been used in a range of
applications including COVID-19 transmission risk modeling (Ozdenerol
& Seboly, 2023), carbon footprint estimation (Baiocchi et al., 2022), and
assessing the opioid epidemic (Hanson, 2020).

As described above, Tapestry data have successfully been applied in
previous urban forestry investigations (Locke et al., 2013; 2014; Locke &
Grove, 2016; Nguyen et al., 2017). Conveniently there are three tiers or
levels of the categories that neatly match the three theories. The first is
urbanicity which corresponds to population density (Fig. 1A, Figure S1
left). The second level is called LifeMode which corresponds to social
stratification theory (Figure S1 right). Each LifeMode group is nested
within one and only one Urbanicity category. The third level is Seg-
ments, which corresponds to lifestyle and lifestage (Figure S2). Thus
Tapestry the geodemographic market segmentation operationalizes the
three theories investigated here. Each Segment is nested within one and
only one Urbanicity class. The classes found within Baltimore City in
year 2015, their frequency, and hierarchical layout can be found in
Table S1. The Tapestry data used here reflect year 2015, intentionally
chosen to occur between 2013 and 2018 to match the land cover data
(described below). An additional benefit of categorical data analyses
here is that the input variables into a geodemographic segmentation are
naturally correlated (e.g. income and education), or correlated by con-
struction (e.g. % of housing units vacant, owner occupied, or rented). By
creating social groups first, subsequent statistical analyses are less prone
to multicollinearity, and scores of continuous predictors do not consume
degrees of freedom in the model. These simpler models may also pro-
duce results that are easier to interpret, because they have fewer terms.

2.2.2. Yards

An algorithm created to separate property parcels into front and
backyards developed in Boston, MA to examine tree canopy cover
(Locke, Ossola, et al., 2021; Ossola et al., 2019a; b) and vegetation-
surface temperature relationships during a heat wave in Adelaide,
Australia (Ossola et al., 2021), was adapted to work with parcels
boundaries in Baltimore City, MD. The geospatial approach identifies
the centroid of the largest building footprint per parcel (to exclude ga-
rages, sheds, etc.), and finds the shortest distance from that centroid to
the street centerline. Finally, a line through the centroid and perpen-
dicular to that first line is drawn to segment the parcel in to two yards.
Parcel data represent year 2015 conditions, and buildings year 2017;
these are closest in time to each other as is possible and in the middle of
the land cover years (2013 and 2018, described below).

Corner yards, which lack a clear front versus back distinction, were
assigned to parcels located within 20 m from street intersections. This
algorithm resulted 326,191 yards (141,053 backyards, 110,262 front
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Fig. 1. Tapestry Urbanization categories at the Census block group level (A), residential tree canopy cover change (B), yard-level polygons derived from parcels (C).
Panels B and C refer to the location of red star in panel A. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

yards, and 74,876 other yards). Parcels may lack either a front or back
yard, so the yards are not all matched pairs. Accuracy of the yard clas-
sification algorithm was calculated by visually interpreting 4,000
randomly-selected yards and calculating the percentage of yards
correctly classified. The overall accuracy in identifying delimiting Bal-
timore’s backyards and front yards was 99.05 %. Misclassifications
occurred when a true front or back yard was within 20 m of an inter-
section and was classified as a corner yard. A smaller buffer around
intersections would have reduced that error but would have resulted in a
number of corner yards being wrongly included in the study. The yard
polygons are freely available via Ossola and Locke (2024).

2.2.3. Land cover change

Trees do not grow instantaneously and are subject to long-term lags
and legacies and the historic aspects of contemporary tree canopy
change have been examined elsewhere (Healy et al., 2022; Nix et al.,
2023; Roman et al., 2021). We instead focus on near-term contemporary
changes that reflect recent land management activities. The Chesapeake
Conservancy has created a freely available high-resolution (1 m?) high-
accuracy (Pallai & Wesson, 2017) land cover change dataset for the
entire Chesapeake Bay watershed (Chessapeake Bay Program, 2022).
The accuracy of land cover classifications across the dataset is 91 %, the
accuracy of the tree canopy classes is 98 % (Pallai & Wesson, 2017). The
land cover change for Baltimore City, MD, was downloaded from (http
s://www.chesapeakeconservancy.org/conservation-innovation-center
/high-resolution-data/lulc-data-project-2022/) and all tree classes (Tree
Canopy, Tree Canopy Over Roads, Tree Canopy Over Impervious
Structures, and Tree Canopy over Other Impervious) were combined for
each year to create 2013 and 2018 tree canopy cover datasets. The blend
of object-based image analysis (OBIA) and manual corrections ensures
precision, accuracy, and realism (MacFaden et al., 2012; O’Neil-Dunne
et al., 2013; 2014). Importantly, these two years of data were created
expressly for the purpose of measuring fine-scale landscape changes
using OBIA techniques and manual corrections, so that true changes are
detected and not a conflated mix of landscape change and changes in
remote sensing techniques. These data represent the most precise and
accurate tree canopy change maps produced for this area and for this
time period.

2.3. Statistical analyses

Data were analyzed using generalized linear mixed models. The unit
of analysis was the census block group, and the response variable was
the aggregate proportion of yards covered by canopy in its containing
block group. Yards here are the non-building area of a parcel. Because
the proportion of tree canopy cover ranges from nearly zero to nearly
one, we used a beta error distribution (Geissinger et al., 2022). Some
block groups lack front or back yard cover, so a zero-inflated beta dis-
tribution was used via the BEINFO(Q) function in the gamlss R package
when zeros were present (Rigby et al., 2005). This issue occurred spe-
cifically in the models which differentiated between front and backyards
(see below).

In the primary analyses, for each of the three levels of the categories
of Tapestry segmentation, we fit four models (twelve models in total): A)
Residential: an all-residential lands model which aggregates front yard,
backyard, and other yards in that block group (n = 1,256, each block
group appears for 2013 and again for 2018), B) Front/Back data: a
model whose outcome is the proportion tree canopy, with rows for
either front or back yard in each block group but no front/back term is
estimated (n = 2,506, some block groups do not have front yards), C)
Front vs Back (additive): a model like B that includes a front versus back
yard as an additive term, and D) Front vs Back (interaction): a model
that includes an interaction between Tapestry segmentation and front
versus backyard. This approach builds from simple to complex and al-
lows us to determine if and how tree canopy change relates to social
groups on front and back yards. All specifications included year as an
additive effect and a block group random intercept to account for the
fact that within a block group between canopy cover of front and
backyards, and canopy cover between time periods are likely correlated.
AIC and RMSE were used to compare the statistical models.

In secondary analyses, once it was seen that models including front
and back improved model fit, data were separated into front- and
backyard-only subsets. The then three levels of Tapestry segmentation
were examined again with six additional models (front or back only and
for each of the three levels of Tapestry). The purpose was to assess model
fit against the three explanations: population density, social stratifica-
tion and the luxury effect, and lifestyle behavior and the ecology of
prestige for front and back yards separately. Data analyses were con-
ducted in R version 4.3.2 (R Core Team, 2023) in RStudio with the sf
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package (Pebesma, 2018) and tidyverse meta-package (Wickham et al.,
2019). Model estimates were derived and extracted using the margin-
aleffects package (Arel-bundock et al., n.d.).

3. Results

Residential tree canopy cover per block group, which includes back,
front and corner yards, per year ranged from 0.615 % to 84.7 % in year
2013, and from 0.709 % to 84.9 % in year 2018 (Table 1). Front yard
tree canopy cover per block group also ranged widely from 0.00 % to
89.5 % cover, and back yard cover 0.00 % to 85.4 % in both years 2013
and 2018.The average tree canopy cover was greater in backyards
(38.42 % and 37.84 % in 2013 and 2018, respectively) than front yards
(26.11 % and 25.2 %). In other words, at the block group level, back
yard tree canopy cover is roughly 12 percentage points greater than
front yards. Mean and median tree canopy cover changes over time were
miniscule; most tree canopy is persistent at this spatial scale (yards
aggregated to block groups) and temporal scale (5 years with a single
time step).

Across the three Tapestry categorizations, segments (corresponding
to lifestyle and lifestage) predicted the tree canopy cover better than
urbanization (population density), or the lifemode (social stratification)
classifications as indicated by lower AICs (Table 2, Figure S3); model fit
statistics (AIC, BIC, RMSE) support the same conclusions. Among the
models using Tapestry segments as the predictor, front versus back ad-
ditive specification fit best (AIC = —2,109.16); the front vs back inter-
action term with segments resulted in a slightly worse-fitting model
(AIC = —2,093.49). The root mean square error was also slightly lower
for the front versus back additive specification (0.988) than the front vs
back interaction model (RMSE = 0.992).

The secondary front and backyard-only analyses reinforced the pri-
mary analyses’ findings. The rank-order of the AICs also followed the
population density, social stratification, lifestyle/lifestage order, where
the lifestyle/lifestage model fits best (Figure S4). Front yard-only models
always fit better than backyard-only models. This adds evidence to the
idea of fitting into a neighborhood aesthetic, and expressing member-
ship in the lifestyle group.

The best-fitting model (tapestry segments with front and backyards,
but no interaction) showed significant differences for front versus back
yard and nearly all segment categories (Fig. 2, Table S2). Year was not a
significant predictor, indicating that there were no consistent changes in
canopy on residential yards within these units of analyses and level of
aggregation, although the sign was positive. The model met model as-
sumptions. The residuals were normally distributed, multicollinearity
was not an issue because the VIF scores were 1.01, 1.01, and 1, for front
vs back, tapestry segment, and year, respectively.

The model selection process helps us consider which explanation
about socioeconomic and demographic characteristics correspond best
to the social groups. Rare Tapestry segments are included because they
still contribute valuable information to front vs back comparisons (Q2:
spatial) and over time (Q3: Temporal) questions. Incorporating the
additional complexity offered by the Tapestry segment categorization

Table 1
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reflecting lifestyle/lifestage, and which contains more categories than
either the urbanicity or LifeMode groups, appears to be warranted
because the data show substantial variation in the UTC across these
groups, both in front and back yards, and the measures of model fit are
superior.

Through the model selection process, we learned that there are
important differences between front and back yards, and that the
additional complexity associated with parsing parcels into front and
backyards is also warranted. Prior social theory and empirics suggest
front and backyards are distinct portions of the urban forest. Analyti-
cally lumping all residential tree canopy together occludes the ability to
spatialize social theories about yard care, namely that attitudes and
preferences vary from front to back, with associated differences in
outcomes like tree canopy cover.

Post-hoc pairwise comparisons of front vs back yards and Tapestry
segment resulted in 2,016 hypothesis tests, far too many to list or
display; 65.87 % (n = 1,328) of all pairwise tests were significantly
different at the p < 0.05 level. Examining all 2,016 pairwise differences
by their front vs back comparisons, 62.90 % (n = 312) back yard to back
yard comparison were significant, 63.33 % (n = 314) front to front were
significant, and 68.55 % (n = 702) back to front comparisons were
significant. Therefore same-yard location pairs (ie back to back or front
to front) were slightly less likely to be significantly different than
opposite-yard comparisons (back to front) or all pairs as a whole.

Because each Tapestry segment is nested within a Tapestry urbani-
zation category, pairwise tests can be grouped to the urbanization level.
Among the 508 pairwise tests of segments within the same urbanization
category (ie. segments in Urban Periphery compared to segments also in
Urban Periphery), 57.67 % (n = 293) were significant. Comparisons
across urbanization category (ie different urbanization categories) un-
surprisingly yielded more significant pairs 68 % (n = 1,035). The ma-
jority of within-urbanization segments tests were different, and the vast
majority of across-urbanization segment comparisons were more
different than chance alone.

Post-hoc tests can also be grouped by yard location (front vs back)
and by urbanization category simultaneously. There were 119 back yard
to back yard pairs that were also in the same urbanization category, of
which 48.73 % (n = 58) were significant. Among the 119 front yard to
front yard comparisons of segments also within the same urbanization
category 61 (51.26 %) were significantly different. Finally, the 270 back
to front comparisons that were also within the same urbanization
category yielded 64 % of pairs (n = 174) that were significantly
different. In summary, about half of the same-yard (back to back or front
to front) were significantly different within and across urbanization
categories, while nearly 2/3s of opposite-yard (eg back to front) within
the same urbanization category were different.

This modeling approach can further illustrate the importance of
differences by lifestyle and lifestage and the utility of geodemographic
segmentation. First, we can examine significant differences within an
urbanization class. For example, City Strivers and Fresh Ambitions are
both in the most-urban group (Fig. 2, top panel) and yet back yards in
City Strivers has 21.3 percentage points 95 % CI [17.2, 25.5] more tree

Descriptive Statistics: census block group-level summaries of tree canopy cover on residential yards. Residential includes, back yards, front yards, and corner yards.

IQR=Interquartile Range.

Location Year Mean Tree CanopyCover (%) StandardDeviation Median Minimum Maximum IQR
Back 2013 38.42 19.4 37.8 0 89.48 28.38
2018 37.84 19.7 37.03 0 89.48 28.82
Front 2013 26.11 16.89 25.21 0 85.42 20
2018 25.2 17.08 24.14 0 85.38 21.2
Residential 2013 35.23 17.13 34.53 0.71 84.89 22.42
2018 34.56 17.41 33.84 0.62 84.74 22.64
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Table 2
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Model fit statistics and model comparisons. The letters in the Model Specification column correspond to Figure S3.

Geodemographic segmentation (Tapestry) Model Specification AIC BIC RMSE no. obs. Residual df Tapestry rank (AIC)
Urbanization A) Residential —1102.61 —1071.81 1 1254 1248 3
Urbanization B) Front/Back data —1424.78 —1383.99 1 2506 2499 3
Urbanization C) Front vs Back (additive) -1677.33 —1630.72 0.99 2506 2498 3
Urbanization D) Front vs Back (interaction) —1680.94 —1616.84 1 2506 2495 3
Lifemode A) Residential —1231.24 —1154.21 1 1256 1241 2
Lifemode B) Front/Back data —1648.97 —1555.72 0.99 2510 2494 2
Lifemode C) Front vs Back (additive) —1929.79 —1830.72 0.98 2510 2493 2
Lifemode D) Front vs Back (interaction) —1926.87 —1757.85 0.99 2510 2481 2
Segments A) Residential —1293.85 —-1119.29 1 1254 1220 1
Segments B) Front/Back data —1785.9 —1581.98 0.99 2506 2471 1
Segments C) Front vs Back (additive) —2092.42 —1882.67 0.99 2506 2470 1
Segments D) Front vs Back (interaction) —2078.6 —1688.22 0.99 2506 2439 1

canopy cover than Fresh Ambitions, and 16.5 percentage points 95 % CI
[13.3, 19.7] in front yards. Nationally the Fresh Ambitions segment has
larger households, more racially diverse neighborhoods, and less
educational attainment than the City Strivers segment (Table S3). Sec-
ond, we can examine segments that are not significantly different
despite belonging to different urbanization classes. For example, City
Strivers is in the most urban class, and Retirement Communities is in the
second least-urban class. Yet their back and front yards have statistically
the same amount of tree canopy cover. Multiple factors reflecting ur-
banization, socioeconomic status, and lifestyle/lifestage can be associ-
ated with similarities of tree canopy cover, on front and back yards,
which would have gone un-seen with a linear regression approach with
scores of predictors.

The temporal change observed was small and statistically insignifi-
cant (Table S2), although the trend appears to be net gain (Figure S5).
Future tree canopy is tree canopy persistence plus gains from succession,
grow out, and planting, minus losses from removal, death from old age,
disease, and storm damage (Luley & Bond, 2002). Gain is a slow process
whereas loss is often an event. Most tree canopy is persistent at this
spatial scale (yards aggregated to block groups) and temporal scale (5
years with a single time step), although individual yards and/or block
groups may experience substantial loss or gain. However, today’s tree
canopy is not guaranteed to be present tomorrow.

4. Discussion
4.1. Research questions

We investigated residential tree canopy cover from three interrelated
perspectives: social, spatial, and temporal. We asked (Q1: Social) which
categorization of social groups (population density, social stratification,
or lifestage/lifestyle) best predicts residential tree canopy cover in order
to test the theory of an ecology of prestige (Grove et al., 2014; Grove,
Troy, et al., 2006). Population density and social stratification do predict
residential tree canopy cover, but the lifestyle/stage categorization
associated with an ecology of prestige fits best. This corroborates prior
research on the theory of social norms associated with fitting into a
neighborhood aesthetic (Robbins, 2012), participation in tree giveaways
(Locke & Grove, 2016; Nguyen et al., 2017), and tree canopy change
(Locke et al., 2017).

Because social norms are strong motivators of yard care practices
(Chowdhury et al., 2011; Cook et al., 2012), and there are frequently
differences in yard management between more-visible spaces (front
yards) than less-visible backyards (Harris et al., 2013; Locke, Avolio,
et al., 2018; Locke, Roy Chowdhury, et al., 2018), we asked if (Q2:
Spatial) explicitly separating front and backyards would improve model
fit. The empirical inclusion of front and backyard differentiation of this
theory-informed expectation (differences between front and backyards)
improved model fit. This sub-parcel scale of socio-spatial analysis has
often been overlooked or assumed away in urban tree canopy research,
potentially due to the computational challenges of spatially resolving

front and backyards from parcel data. Yet overlooking sub-parcel vari-
ation masks social values and uses (E. M. Harris et al., 2013; Locke, Roy
Chowdhury, et al., 2018) and the different contributions of front and
backyards to urban residential tree canopy overall. This research
demonstrated that lifestage and lifestyle categories (prestige) are the
best predictors of urban tree canopy for residential areas overall
(Figures S3 and S4, Q1: Social), and that distinguishing between front
and backyards further improves the ability to model overall urban tree
canopy cover for residential lands (Q2: Spatial). Front yard only models
always outperformed backyard only models in the secondary analyses
(Figure S4). Additionally, there are differences in canopy cover between
front and backyards by social group.

Finally, we investigated how tree canopy change varies by social
groups and by front and back yard (Q3: Temporal) to better understand
urban forest dynamics. Previous research had examined long-term
temporal legacies and lags (30-100 years) on current distributions of
urban tree canopy (Healy et al., 2022; Locke, Roman, et al., 2023;
Roman et al., 2021; Zhou et al., 2011). Research on near-term temporal
changes (5-10 years) has been constrained by the lack of available urban
tree canopy data. Our analyses of residential yards found no statistically
significant changes over time from 2013 to 2018, although the point
estimate sign was positive (Table S2). Thus, there is little urban tree
canopy loss or gain in residential yards on average when aggregated to
block groups for this near-term time period, so the potential relation-
ships between social groups or front and backyards remain uncertain.

4.2. Implications

These socio-spatial results can have cascading social-ecological im-
plications for residential areas because of the association between trees
and ecosystems services for nutrient fluxes, hydrologic flows, heat, and
wildlife. Front yard lawns appear to export more nitrogen than back-
yards (Suchy et al., 2023). Hydrologic flow path lengths and densities
within and among backyards may offer greater stormwater absorbing
potential than front yards. Backyards may be cooler during extreme heat
events due to their vegetative cover (Ossola et al., 2021). The greater
extent (Ossola et al., 2019a) and connectivity (Ossola et al., 2019b) of
tree canopy cover in backyards may offer more benefits to urban wildlife
species.

Social, spatial, and temporal analyses of urban tree canopy cover can
have important equity and management implications. Some people
experience more ecosystem services from urban tree canopy than others,
and it is not by chance alone. Understanding which social groups have
more tree canopy cover — and which social groups have more opportu-
nities — may improve efforts to target and reach segments of society that
have been ignored or poorly understood and engaged. In other words, it
is important to focus on the appropriate combination of messages,
markets (social groups), and messengers (Locke & Grove, 2016). Failure
to meet people where they are can reduce participation in planting and
stewardship, and even catalyze backlash against trees (Battaglia et al.,
2014; Carmichael & McDonough, 2018; 2019), further reducing
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Fig. 2. Predictions from best-fitting model: Tapestry segments (corresponding to lifestyle/life stage), and residential lands parsed by front and back yard, with
random effects for block group, and a zero-inflated beta distribution. Panels are arrayed from most urban (top, “Principal Urban Center”) to least (bottom, “Suburban

Periphery”). Within each panel segments are arrayed from highest (top) socioeconomic st:

atus to lowest (bottom). Table S1 provides additional details about the order

of Tapestry Segments. Point estimates are sized relative to the number of observations in year 2013; category infrequency is associated with wider confi-

dence intervals.
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participation in planting and care. Programs such as the community-
based GreenSpace and GreenSkills programs of the Urban Resources
Initiative offer one approach to overcome these common pitfalls, while
also training urban foresters in a variety of skills (Scanlan et al., 2021).

There are at least two additional management insights from this
research. First is the idea that the appropriate combination of markets,
messages, and messengers is critical to both planting new trees and
retaining existing trees on privately managed land. This research pro-
vides empirical support to the idea that different types of neighbor-
hoods, or “markets” corresponding to lifestyle/lifestage categories, have
different amounts of existing tree canopy cover, and differences by front
and back yard. Messaging may need to vary, tailored to the issues,
motivations, and preferences of these different markets, and be deliv-
ered through different sources (messengers) for tree planting (Locke &
Grove, 2016). Similarly, if the study period were longer, we may also
have found variation in tree canopy change by social group, again with
varied relationships across front and back yards. Because the extent of
urban tree canopy cover depends upon the combination of planting new
trees, minimizing loss, and retaining existing urban tree canopy (Luley &
Bond, 2002), the combination of markets, messages, and messengers
may also be critical to promoting tree care in order to maintain tree
health (e.g. watering, pruning, removing vines) and retention of existing
urban tree canopy cover. Second, social drivers and potential ecosystem
service benefits may vary from front and backyards. Thus, different
social engagement practices and planting schemes may be needed for
front and backyards for different social groups.

This research raises an important question with regards to the rate to
change of tree canopy cover. Policy makers, planners, and managers
associated with urban tree planting initiatives would like to demonstrate
success. However, what is the appropriate timeframe to assess progress?
Given the indeterminant results from this research, urban tree planting
initiatives may need to re-evaluate the timeframe for assessing success.
Decision makers may also need to develop near- and long-term models
for achieving success. Existing urban tree programs essentially focus on
establishing a goal and asking how many trees have to be planted to
achieve the goal. However, as noted before, an urban tree canopy goal
depends upon new tree planting, minimizing loss, and retaining existing
urban tree canopy cover. Thus, improved urban tree canopy models
would consider growth rates and loss for urban trees in different size
classes over time and the relationship between size classes and canopy
cover for different species and in different conditions, such as public
trees (public rights-of-ways and parks) and private trees (front and
backyards).

4.3. Limitations

The front and back yard classification algorithm was not perfect, and
some front or backyards may have been inadvertently classified as other
yards. As a consequence, a few of these yards may have been dropped,
but this is preferred over incorrectly assigning corner yard status to front
or backyards. Tapestry’s clustering methods are not in the public
domain. Additionally, we did not separate out single family homes from
other types of residential land uses, though two-family homes and
multifamily units may have less real or perceived decision-making
control over their yards. The same is true for renters. We focused on
residential land uses, because they are the largest, have the most tree
canopy cover, the most opportunity for additional cover, and the most
land managers. It is important to also consider how tree canopy changes
on land managed by municipal agencies such as trees in parks and street
trees in the public right of way (Landry & Chakraborty, 2009), but that
was beyond the scope of these analyses. This paper focuses on Baltimore
City, MD. Results may generalize to other urban areas with similar land
use histories, development patterns, and preponderance of single-family
homes with decision making power over yards, but care should be taken
wen extending to other contexts where yard management permissions
might not be granted.

Landscape and Urban Planning 253 (2025) 105187

5. Conclusions

High-resolution (1 m?), high-accuracy (>99 %) tree canopy maps are
now industry standard in the United States (Kimball et al., 2014) and
other parts of the world (Browning et al., 2024) for research and prac-
tice. Equipped with these detailed and flexible data, many municipal-
ities have adopted tree canopy goals (Locke et al., 2017; Nguyen et al.,
2017; Young & Mcpherson, 2013). In order to evaluate progress towards
achieving canopy cover goals and to promote adaptive management, it is
important to assess three inter-related domains of urban tree canopy
research: how UTC varies socially, across space, and over time.

This study corroborates prior findings and extends our understand-
ing of urban tree canopy by different social groups, across space, and
over time. While population density and social stratification are asso-
ciated with tree canopy cover on residential lands, lifestyle and lifestage
are better predictors. These results have important implications for both
social-environmental theory and for UTC policies and practices. For
instance, detailed and customized approaches may be needed to engage
different social groups. Beta regression models that explicitly distinguish
between front and backyards fit the data better than all-residential
statistical models. Ignoring the differences between more readily-
visible front yards and more secluded backyards hinders our under-
standing of present-day tree canopy cover, and the ability to craft pro-
grams to target these different sub-parcel geographies. This finding
suggests new programs may be needed to support tree planting and care
for backyards in private residential lands. We observed relatively little
change in the canopy over the five-year study period in Baltimore at
these spatial scales, corroborating other short term tree canopy studies
which show a preponderance of persistence (Chuang et al., 2017; Guo
et al., 2019; Hostetler et al., 2013; Locke et al., 2017; Parmehr et al.,
2016). Future tree canopy cover is tree canopy persistence plus gain
from growth, planting, and success, minus losses to old age, storms, and
removals from pests, landowners or agencies (Luley & Bond, 2002). The
vast majority of the tree canopy was persistent over the study period, but
without adequate protection, that canopy cover cannot be taken for
granted. A fruitful next step could be to develop spatially-explicit models
that account for how much tree planting, maintenance, and conserva-
tion is needed to achieve the city’s 40 % canopy goal with various sce-
narios for mortality, longevity, and removal over several timesteps.
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