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1  |  INTRODUC TION

Tropical second- growth forests, or tropical forests that regenerate 
naturally after the cessation of human land uses such as pasture or 

agriculture, contribute to the global forest carbon sink (Pan et al., 2011) 
and provide key habitat for tropical species (Rozendaal et al., 2019). 
Whether net carbon and biodiversity benefits of second- growth trop-
ical forests are large (e.g., Griscom et al., 2017) or small (e.g., Nunes, 

Received: 25 August 2021  | Revised: 30 January 2022  | Accepted: 24 March 2022

DOI: 10.1111/btp.13122  

O R I G I N A L  A R T I C L E

Patterns and controls on island- wide aboveground biomass 
accumulation in second- growth forests of Puerto Rico

Sebastián Martinuzzi1,2  |   Bruce D. Cook2 |   Eileen H. Helmer3 |   Michael Keller3,4 |   
Dexter H. Locke5  |   Humfredo Marcano- Vega6 |   María Uriarte7  |   Douglas C. Morton2

1SILVIS Lab, Department of Forest and 
Wildlife Ecology, University of Wisconsin- 
Madison, Madison, Wisconsin, USA
2Biospheric Sciences Laboratory, NASA 
Goddard Space Flight Center, Greenbelt, 
Maryland, USA
3USDA Forest Service International 
Institute of Tropical Forestry, San Juan, 
Puerto Rico, USA
4Jet Propulsion Laboratory, California 
Institute of Technology, Pasadena, 
California, USA
5USDA Forest Service Northern Research 
Station, Baltimore Field Station, Baltimore, 
Maryland, USA
6USDA Forest Service Southern Research 
Station, Knoxville, Tennessee, USA
7Department of Ecology, Evolution 
& Environmental Biology, Columbia 
University, New York, New York, USA

Correspondence
Sebastián Martinuzzi, SILVIS Lab, 
Department of Forest and Wildlife 
Ecology, University of Wisconsin- 
Madison, 1630 Linden Drive, Madison, WI 
53706, USA.
Email: martinuzzi@wisc.edu

Funding information
U.S. Department of Energy, Office 
of Science, Office of Biological and 
Environmental Research

Associate Editor: Ferry Slik

Handling Editor: Laura Schneider 

Abstract
Understanding the heterogeneity of biomass accumulation in second- growth tropi-
cal forests following land use abandonment is important for informing ecosystem 
carbon models and forest restoration efforts. There is an urgent need for a broad 
sample of second- growth forests to enhance our knowledge of carbon accumula-
tion in human- dominated landscapes, especially for older forests. Puerto Rico has 
predominantly second- growth forests, ranging in age from approximately 25 to 
more than 80 years. We used an island- wide sample of airborne lidar from the NASA 
Goddard Lidar, Hyperspectral, and Thermal (G- LiHT) Airborne Imager collected on 
March 2017, forest inventory data, and data on forest age, precipitation, soils, and 
land use to estimate aboveground biomass stocks in moist and wet, second- growth 
tropical forests. Biomass accumulation rates in Puerto Rico were lower, on average, 
than in other Neotropical forests. Median biomass across >16,700 ha of older second- 
growth forests was 105 Mg ha−1, and sampled biomass rarely surpassed 250 Mg ha−1. 
Differences in biomass by age were large and persistent across different substrates 
and land uses, with a plateau in the pattern of island- wide biomass accumulation after 
about 33 years. A spatial regression model showed that multiple factors were related 
to biomass accumulation, including time since abandonment, geologic substrate, past 
land use as coffee or pasture, precipitation, topographic wetness index, and slope. 
Our findings have important consequences for the total carbon storage and expected 
climate mitigation benefits of large- scale reforestation efforts, and highlight the value 
of airborne lidar for quantifying biomass variability in complex tropical landscapes.

Abstract in Spanish is available with online material.
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Oliveira, Siqueira, Morton, & Souza, 2020) rests on three underlying 
assumptions. The first assumption is that the extent of second- growth 
forests is large and growing. It has been hypothesized that 70% of 
the world’s tropical forests, including 28% of the Neotropical forests, 
are second- growth, and that their extent will expand as more land is 
abandoned (Chazdon et al., 2016; FAO, 2010). Second, long- term cli-
mate mitigation from reforestation assumes permanence (Griscom 
et al., 2017), a substantial departure from rotational land management 
common across the tropics (Hansen et al., 2020; Nunes et al., 2020). 
Third, these studies assume that biomass in second- growth tropical 
forests recover quickly, taking an average of 66 years to reach 90% of 
old- growth values (Poorter et al., 2016). However, forest regeneration 
rates are extremely variable, and the drivers of this variation across 
landscapes are poorly understood (Chazdon, 2014; Norden et al., 2015). 
Studies to characterize the patterns and controls of biomass recovery 
across heterogeneous landscapes are critical to test these underlying 
assumptions regarding second- growth forests in order to improve car-
bon modeling studies and tropical forest restoration efforts worldwide.

Knowledge of forest regeneration rates and controls comes al-
most entirely from studies using a limited number of field plots. For 
example, Letcher and Chazdon (2009) used a chronosequence of 23 
forest plots regrowing from pasture. A recent synthesis across 45 
sites and ~1500 forest plots in Neotropical forests found more than 
a 10- fold difference in biomass accumulation in the first 20 years 
of forest succession (from 20 to 225 Mg ha−1, average 122 Mg ha−1, 
or a net carbon uptake of 3.05 Mg C ha−1 yr−1) (Poorter et al., 2016). 
The broad range of biomass accumulation rates corresponds to 25– 
85% of aboveground biomass in old- growth conditions in the first 
20 years (Poorter et al., 2016). Previous studies show that forest re-
generation rates can be affected by a variety of abiotic and biotic 
factors besides stand age, such as climate (Poorter et al., 2016), soils 
(Orihuela- Belmonte et al., 2013; Zarin et al., 2005), land use history 
and surrounding land cover (Aide, Zimmerman, Pascarella, Rivera, & 
Marcano- Vega, 2000; Aide, Zimmerman, Rosario, & Marcano, 1996; 
Arroyo- Rodríguez et al., 2017; Bonner, Schmidt, & Shoo, 2013; Crk, 
Uriarte, Corsi, & Flynn, 2009; Helmer et al., 2010; Zarin et al., 2005), 
topography (Crk et al., 2009; Orihuela- Belmonte et al., 2013), species 
composition (Lasky et al., 2014; Poorter et al., 2016), geological sub-
strate (Helmer, Brandeis, Lugo, & Kennaway, 2008), and disturbance 
(Becknell et al., 2018; Flynn et al., 2010). Analysis of small (<1 ha) 
forest inventory plots demonstrated that site- specific factors compli-
cate the interpretation of biomass recovery in second- growth forests 
(Norden et al., 2015). Because forest inventory plot data are costly 
and time- consuming to collect, it is difficult to capture landscape- scale 
variability, limiting our understanding of patterns and controls of bio-
mass recovery. Consequently, large- scale studies of biomass accumu-
lation are needed to capture gradients in environmental conditions 
and a diversity of forest ages, including older second- growth forests.

Lidar remote sensing captures three- dimensional forest structure 
and provides a unique opportunity to evaluate fine- scale variability 
in biomass recovery across large landscapes (Becknell et al., 2018; 
Mascaro, Asner, Dent, DeWalt, & Denslow, 2012). First, the com-
bination of lidar and forest inventory data can be used to estimate 

aboveground forest biomass across the entire domain of airborne lidar 
coverage, including remote and fragmented landscapes rarely sam-
pled with other techniques (Gobakken et al., 2012; Huang et al., 2019; 
Hudak et al., 2012). Second, combining predicted aboveground bio-
mass with estimates of forest age derived from past land use data and 
satellite imagery increases the sample size for subsequent analyses of 
biomass accumulation by several orders of magnitude compared to 
data available from ground inventories (Becknell et al., 2018; Helmer, 
Lefsky, & Roberts, 2009). However, previous lidar- based studies of 
second- growth forests have primarily focused on protected areas, 
rather than more extensive human- dominated landscapes. For ex-
ample, Becknell et al. (2018) quantified biomass recovery in Serra 
do Conduru State Park (Atlantic Forest, Brazil) and found rapid ini-
tial biomass regeneration (6 Mg ha−1 yr−1) for forests between 10 and 
32 years old, although biomass varied substantially within forests of 
similar age. A regression model that accounted for spatial autocor-
relation and included forest age, slope, and distance to roads or open 
areas explained 62% of that variation (Becknell et al., 2018). In con-
trast to studies that used airborne lidar, Helmer et al. (2009) used sat-
ellite lidar data from the Geoscience Laser Altimeter System (GLAS) 
over Rondônia, Brazil, and found an average biomass accumulation 
rate of 8.4 Mg ha−1 yr−1 for forests of 3– 16 years.

Puerto Rico is an ideal place to assess the patterns and controls 
of biomass accumulation in second- growth tropical forest landscapes 
following land use abandonment. First, the island has abundant 
second- growth forests of ~25 to 80+ yr, and therefore includes many 
examples of relatively mature forests that are less common in other 
Neotropical regions. Second, forests have recovered over different 
geologic substrates (e.g., volcanic and limestone), past land uses (e.g., 
coffee and pasture), and climates (e.g., moist and wet), which provides 
a unique opportunity to evaluate the role of multiple controls on bio-
mass accumulation. Third, the island has a long history of forest re-
search and monitoring through forest inventory plots, which are key 
inputs for remote sensing applications like biomass mapping.

Our goal was to understand the patterns and abiotic controls of 
aboveground biomass accumulation in second- growth tropical forest 
landscapes following land use abandonment on the main island of 
Puerto Rico. Specifically, our objectives were to: (i) quantify biomass 
and infer the rates of biomass accumulation based on time since aban-
donment in second- growth forest of Puerto Rico, and (ii) understand 
the main abiotic controls on rates of biomass accumulation. Using 
airborne lidar data, our study captured gradients in environmental 
conditions across the island, providing the fine- scale detail over large 
areas needed to characterize the variability of forest carbon stocks.

2  |  METHODS

2.1  |  Study area

The island of Puerto Rico is approximately 9000 km2, of which 55% 
is forested, and most of the forests are the result of land abandon-
ment (Franco, Weaver, & Eggen- McIntosh, 1997). The shift in the 
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island’s economy from agricultural to manufacturing and services 
triggered widespread land abandonment in the 1940s. Forest cover 
increased rapidly in the 1950s and stabilized by 2000, after which 
time the rates of deforestation and regeneration of new second- 
growth forests were approximately equal (Helmer et al., 2008). As a 
result, there is a wide range of forest ages (5 to ~80 years), with most 
being older than 20 years (Figure 1a). The most common past land 
uses were coffee plantations and pastures, and to a lesser degree 
sugar cane plantations and other agriculture (Figure 1e) (Kennaway 
& Helmer, 2007).

At the same time, the island includes a variety of geologic sub-
strates including volcaniclastic, limestone, intrusive, and others 
(Figure 1c). Elevation ranges from 0 to 1330 m, and annual precip-
itation varies from 701 mm to 4598 mm (Figure 1d). Most forests 
are subtropical moist or subtropical wet according to the Holdridge 

Life Zone System (Figure 1b). We focused on the moist and wet for-
ests from Holdridge (excluding the dry forests from our analysis), 
referred to here as humid forests, because these ecosystems have 
the highest carbon sequestration potential (Poorter et al., 2016) and 
account for the majority of forest cover on the island.

2.2  |  Data

We developed two models to assess aboveground biomass in 
second- growth forests of Puerto Rico. First, we used co- located for-
est inventory and high- density airborne lidar data to calibrate a sta-
tistical model of aboveground forest biomass using metrics derived 
from airborne lidar data, which allowed us to map biomass within 
transects of lidar coverage across the island. Then, to understand 

F I G U R E  1  Study area and lidar acquisition areas. (a) Estimated forest age for the island of Puerto Rico, with G- LiHT lidar acquisitions 
shown in black; (b) Holdridge’s life zones; (c) geologic substrate; (d) precipitation; (e) example of historic land use map (1977)
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the rates and abiotic controls on biomass distributions, we evaluated 
the patterns of lidar- derived aboveground forest biomass across for-
est age classes and built a multivariate model of biomass accumula-
tion with several environmental covariates. These two models are 
thus fundamentally different; while the goal of the first model is to 
predict (i.e., map) aboveground forest biomass, the goal of the sec-
ond model is to understand the relationship between aboveground 
biomass and underlying environmental variables.

2.2.1  |  Forest inventory data

We used data from permanent forest inventory plots from the 
U.S. Forest Inventory and Analysis (FIA) Program (hereafter “FIA 
plots”), which is a governmental program designed to monitor the 
forests of the United States, including Puerto Rico (Bechtold & 
Patterson, 2005; Woodall, Heath, Domke, & Nichols, 2011). The 
combination of FIA plots and airborne lidar data has proved use-
ful for quantifying and mapping forest biomass in the contermi-
nous United States (Ene et al., 2018; Nelson et al., 2017; Sheridan, 
Popescu, Gatziolis, Morgan, & Ku, 2015). FIA plots are systematically 
placed across the island, and each FIA plot consists of four circular 
subplots— a central subplot and three peripheral subplots— of 7.32- m 
radius each, sampling a total of 0.067 ha. All trees with a diameter 
at breast height (dbh) ≥ 12.7 cm are surveyed in each subplot. Each 
subplot includes a micro- plot of 2.1- m radius where all trees with a 
dbh of 2.54– 12.7 cm are surveyed.

For calculating aboveground biomass (Mg ha−1), the FIA Program 
uses two approaches. One approach uses regional allometric equa-
tions, and a second approach— called the component ratio method or 
CRM (Heath, Hansen, Smith, & Miles, 2009)— estimates aboveground 
biomass using separate allometric relationships and wood specific 
gravities for the tree bole, bark, stump, and crown. The CRM approach 
was designed to improve the consistency of biomass estimates across 
the nation. Although both estimates were highly correlated (Pearson 
correlation = 0.96), we used aboveground biomass (AGB) estimates 
calculated using the CRM approach because the overall model coeffi-
cient of determination was higher for the CRM approach.

We used FIA plots surveyed between 2016 and 2017, contempo-
rary with the lidar acquisition (March 2017), and restricted our anal-
ysis to FIA plots in moist and wet forests for which all four subplots 
were covered by forest. Forest land according to the FIA Program 
is land that is at least 10% stocked by forest trees of any size and 
has a minimum area of 0.4 ha (Bechtold & Patterson, 2005). In addi-
tion, we excluded plots in mangroves and plots that were surveyed 
after the passage of Hurricane María in September 2017 to avoid 
confounding effects of hurricane damages. The final 56 plots used 
for calibration are located along the transects of lidar data shown in 
Figure 1a, and captured different forest ages, precipitation, geolog-
ical substrate, and past land use (Figure 1). The location of FIA plots 
cannot be disclosed due to USFS policy. Aboveground biomass in 
the 56 FIA plots ranged from 4 to 243 Mg ha−1 with an average of 
97 Mg ha−1.

2.2.2  |  Remote sensing data

We collected lidar data during March 2017 using NASA Goddard’s 
LiDAR, Hyperspectral and Thermal (G- LiHT) Airborne Imager 
(Cook et al., 2013). G- LiHT data were acquired at a nominal alti-
tude of 335 m using two synchronized Riegl VQ 480i scanning li-
dars at 300 kHz, providing a density of ≥12 pulses m2, with up to 
eight returns per pulse. Lidar data were restricted to the central 30° 
field of view with a resulting swath width of 180 m. We collected 
lidar data along transects designed to capture the FIA plots used 
for calibration and sample the island’s environmental heterogene-
ity (Figure 1a). Each transect consisted of three parallel transect 
lines with partial overlap. Coverage in some regions like El Yunque 
National Forest was more extensive to capture the network of exist-
ing research inventory plots. The G- LiHT data collection covered a 
total area of 51,611 ha of forest and non- forest, equivalent to 6% of 
the island area.

We calculated lidar metrics at 26- m pixel resolution (0.067 ha) 
to match the size of the FIA plots (i.e., the area sampled by the four 
subplots in each FIA plot). We calculated 54 lidar metrics of forest 
height (mean, standard deviation, skewness, and kurtosis), height 
percentiles, height densities, and lidar apparent reflectance, includ-
ing different versions derived from all return heights, tree returns 
(returns above 1.37 m), shrub returns (returns below 1.37 m), ground 
returns, or the canopy height model (see Table S1 for a complete list, 
Cook et al., 2013). Identical lidar metrics were calculated for each 
FIA plot (n = 56) by clipping the lidar point cloud by the four subplot 
limits.

2.2.3  |  Environmental data

We focused on six environmental variables known to influence 
forest regrowth in tropical landscapes and for which spatially 
explicit data exist for Puerto Rico: forest age, precipitation, geo-
logical substrate, past land use, topographic wetness, and slope 
(Pascarella, Aide, Serrano, & Zimmerman, 2000, Marcano- Vega, 
Aide, & Báez, 2002). The forest age map was developed by Helmer 
et al. (2008) by integrating historical land use maps from 1951 and 
1977 derived from aerial photos with forest maps for the years 
1991 and 2001 derived from Landsat satellite data. We extended 
these data with forest cover data from 2012 derived from Landsat 
data (Hansen et al., 2013), and used 2017 (i.e., the year of the lidar 
and FIA surveys) as the baseline year for calculating the forest age 
classes. This resulted in five forest age classes: 5– 16, 17– 25, 26– 
39, 40– 65, and ≥66 years, Figure 1a), where the age classes are 
determined by the date of the historic forest maps. For example, 
the 5– 16 years age class corresponds to 2017 forest pixels that 
appeared as forest in the 2012 map but appeared as non- forest 
in the 2001 map (i.e., min age is 2017– 2012 = 5; max age is 2017– 
2001 = 16). The age intervals for each class are also different be-
cause they reflect the dates of the historic maps. Information on 
the most recent type of land use other than forest (i.e., coffee, 
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pasture, and sugar cane) was derived from the historic land use 
maps (Helmer et al., 2008), and assumed that coffee plantations 
in our period of study were shade coffee. Data on mean annual 
precipitation (averaged over 1963– 1995) and geologic substrates 
came from Daly, Helmer, and Quiñones (2003) and Bawiec (1999), 
respectively. Topographic position influences forest structure 
and dynamics by affecting abiotic conditions like soil moisture 
and mechanical stability (Arriaga, 2000; Schwartz, Budsock, & 
Uriarte, 2019). We calculated the topographic wetness index (TWI) 
and slope from the lidar- derived digital terrain model at 26- m res-
olution using the package dynatopmodel in R (Metcalfe, Beven, & 
Freer, 2015). High TWI values indicate grid cells with topographi-
cal characteristics favorable for moisture accumulation, and slope 
affects both runoff and the type and location of human activities 
on the landscape. For example, flat, well- drained areas and more 
fertile soil types are typically cleared first for agriculture, whereas 
steep slopes and nutrient- poor soils are often the last sites to be 
cleared and the first to be abandoned. In our model, mean annual 
precipitation, geologic substrate, topographic wetness, and slope 
do not change through time.

2.3  |  Analysis

2.3.1  |  Lidar– biomass estimates

We estimated AGB using ordinary least- squares regression (OLS), 
a common approach in lidar– biomass applications (Andersen, 
Reutebuch, McGaughey, d’Oliveira, & Keller, 2014; Drake 
et al., 2002; Ene et al., 2018). We built a lidar– biomass OLS model 
based on the 56 FIA plots, with AGB as the dependent variable and 
the lidar metrics as predictor variables. We first used Pearson’s cor-
relations to eliminate highly correlated (r > 0.9) predictor variables, 
reducing the number of lidar predictor variables from 54 to 15 (see 
Table S1). Following Longo et al. (2016), we used the subset selection 
of regression method (Miller, 1984) to identify the best lidar metrics 
among the 15 variables. The subset selection of regression method 
identifies the most parsimonious model from a large number of pre-
dictor candidates. We applied the subset selection method using the 
function regsubsets (package leaps in R software) in the full model 
with exhaustive search and retained only the best subset of predic-
tor variables among the previously chosen 15 variables. We used 
the Bayesian Information Criterion (BIC; Schwarz, 1978) to select 
the final model, that is, the model with the lowest BIC statistic.

To assess the accuracy of the model we used a 5- fold cross- 
validation repeated 100 times (package caret). Residuals from the 
final model were tested for linearity, homoscedasticity, correlation, 
and normality using the function gvlma in R. The results from these 
model tests were not statistically significant (p- value >0.05), indi-
cating that linear model assumptions were acceptable. All statistical 
analyses were done with R version 3.5.1. As a last step, we mapped 
biomass on all lidar transects by applying the regression function to 
the 26- meter resolution gridded lidar data.

2.3.2  |  Rates and controls of aboveground biomass 
accumulation

To evaluate the rates and controls of biomass accumulation, we used 
six spatially explicit environmental variables (forest age, precipita-
tion, geological substrate, past land use, topographic wetness, and 
slope). These environmental layers were not used in the creation 
of the biomass map. For age, we used the mid- point year of each 
age class (i.e., 11, 21, 33, and 53 years) and assumed an average of 
83 years for the oldest age class (i.e., mid- point between 66 and 
100 years). For geological substrate and past land use, we grouped 
the classes with low spatial coverage (<5% of the study area) into a 
single class, “Other” and focused on five major geological substrates 
(intrusive, limestone, submarine basalt and chert, ultramafic, and 
volcaniclastic), and two past land uses (coffee vs. pasture). We also 
assigned a past land use = “forest” to our oldest class (83) since we 
did not have past land use information prior to 1951. Furthermore, 
we restricted our analyses of rates and controls of biomass accu-
mulation to elevations below 600 m (see Figure 1d), corresponding 
to the height of the cloud level, because historic land use activities 
were concentrated at low elevations. Finally, because we were in-
terested in forested areas, and the resolution of the biomass map 
was 26 m, we restricted our analysis to 26- m pixels with ≥80 forest 
cover, based on a 2- m resolution land cover map (NOAA, 2017). The 
final number of 26- m pixels used in these analyses was 248,343 (or 
16,788 ha).

To quantify the rate of biomass accumulation based on time since 
abandonment we used the median biomass values across the differ-
ent forest ages and summarized biomass accumulation as a function 
of age for the different geologic substrates and for the two predom-
inant past land uses (i.e., pasture and coffee). Finally, for comparison 
with other neotropical studies, we compared our results of biomass 
accumulation with age against results from field plots in Poorter 
et al. (2016) using the Mann– Whitney U test. Specifically, we used 
639 plots of moist and wet forests from Poorter et al. (2016) ranging 
in age from 5 to 100 years (i.e., consistent with our study), which we 
grouped following our age classes (11, 21, 33, 53, and 83 years).

To evaluate the controls of forest regrowth, we fit an OLS model 
with the biomass map as the dependent variable and the six environ-
mental variables (forest age, precipitation, geological substrate, past 
land use, topographic wetness, and slope) as explanatory variables. 
The multivariate model allowed us to evaluate the combined effect 
of all variables. However, because the model’s input data were spatial 
and continuous, we expected the OLS models’ residuals would not 
be independent. The global Moran’s I test using a Euclidean distance 
of 50 m to define neighboring pixels revealed significant spatial au-
tocorrelation (Moran’s I 0.51, p < .00001), so the Lagrange Multiplier 
test and the decision tree by Anselin (2005: pp 198– 200) was applied 
to select an appropriate spatial model specification: spatial lag, spa-
tial error, or a portmanteau test (SARMA; i.e., a combination of spa-
tial lag and spatial error). The suggested form SARMA was selected. 
When testing for spatial autocorrelation, we evaluated the results 
using different distances to define neighboring pixels, including 50, 
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100, 200, and 300 m, and chose 50 m because it resulted in the spa-
tial regression model with the highest pseudo- R- squared.

Because of the spatially lagged y term in the SARMA specifi-
cation in the final model, the dependent variable is on both the 
left-  and right- hand side of the equation (Eq. S1). This specification 
assumes that biomass in a pixel is related not only by the value of 
covariates in the unit, but also by covariate values in neighboring 
units. This arises if soil water from adjacent cells influences growth 
in the focal cell, or if tall species disperse from adjacent cells, influ-
encing canopy height. A feedback is present, and the coefficients 
therefore cannot be interpreted in the typical manner (Bivand & 
Piras, 2015). The emanating or spillover effects, known as impacts, 
require a Markov chain Monte Carlo simulation to generate a dis-
tribution of estimates for direct, indirect, and total impacts. Total 
impacts are the sum of direct and indirect impacts, and we report 
on the direct and total impacts. Analyses were done with packages 
spdep and spatialreg in R.

3  |  RESULTS

3.1  |  Lidar– biomass estimates

The lidar– biomass model obtained through the subset selection 
method explained 70% of the variation in AGB in the FIA data 
(Adjusted R2 = 0.70; n = 56) and had a cross- validated RMSE of 
34.2 Mg ha−1. The model included five lidar predictor variables: 
mean height, standard deviation, skewness, kurtosis, and canopy ru-
gosity (Figure 2; Table S2). The first four variables were derived from 
all return heights, while canopy rugosity was calculated from the 1- m 
resolution canopy height model (see Table S1). The model somewhat 
underestimated values for plots with highest biomass (Figure 2), a 
typical feature in lidar– biomass relationships, given that stem diam-
eter growth continues after height growth ceases. In addition, using 
small calibration plots (0.067 ha) in this study may also contribute to 
underestimation of higher AGB because a single large tree can lead 
to a high plot biomass. Finally, although there is evidence of mul-
ticollinearity (see Appendix S1), this should not be a problem here 
because the goal of this model is used to predict biomass from lidar 
data, and not to understand the role of the independent variables 
(Kutner, Nachtsheim, Neter, & Li, 2005).

Across more than 16,700 ha of forest at low elevation (<600 m asl) 
in Puerto Rico, the aboveground biomass averaged 109 ± 54 Mg ha−1, 
with a median of 105 Mg ha−1 and 99th percentile of 251 Mg ha−1 
(Figure 3). Across the extent of the lidar coverage, the full resolution 
(26 m) captures important spatial structure in AGB from topography 
in the karst region of northwest Puerto Rico (subset 1), patchy vari-
ability due to forest fragmentation and topography around El Yunque 
National Forest (subset 2), and fine- scale variability in estimated 
AGB from edge effects in the island interior near major population 
centers (subset 3). The data also exhibit a southwest– northeast gra-
dient in AGB, consistent with the distribution of mean annual pre-
cipitation (Figure 1d), with larger patches of higher- biomass forest 

in the island’s interior, consistent with greater fragmentation and 
human impacts along the coastal margins (Figure 1a).

3.2  |  Rates of and controls of biomass 
accumulation

Biomass increased rapidly during the first 33 years up to 109 Mg ha−1, 
equivalent to an average rate of 3.3 Mg ha−1 yr−1. Median AGB at 
83 years was only 10% higher than at 33 years (120 vs. 109 Mg ha−1, 
p < .0001; Figure 4a). This plateau in biomass accumulation in 
second- growth forests of Puerto Rico contrasts strongly with evi-
dence for rapid biomass accumulation for at least 50 years in other 
Neotropical forests (Figure 4a). Biomass accumulation in Puerto Rico 
was 34% lower, on average, than the biomass accumulation by age 
estimated based on the data from Poorter et al. (2016), ranging be-
tween 11% lower in the youngest age class and 55% lower in the 
53 years age class (Figure 4a).

Summarizing biomass across environmental layers revealed 
several important patterns in the relationship between biomass 
and age across geologic substrates. Biomass accumulation rates 
by age were lower on ultramafic than on intrusive, volcaniclastic, 
submarine basalt, and limestone substrates (Figure 4c). Median 
biomass by age did not show consistent increases on three sub-
strates. On submarine basalt and volcaniclastic substrates, 
53 years forests had lower median biomass than 33 years forests. 
Second- growth forests on ultramafic substrate had the slow-
est biomass accumulation, and intermediate- aged forests (33, 
53 years) had higher biomass than the oldest forests (Figure 4c). 
Whereas average biomass reached 140 Mg ha−1 in intrusive and 
volcaniclastic substrates at age 83, biomass in ultramafic substrate 
peaked at age 33 with 78 Mg ha−1 (Figure 4d). These patterns for 
lower biomass at 53 years (submarine basalt and volcaniclastic) 
and 83 years (ultramafic) partially explain the apparent plateau in 

F I G U R E  2  Predicted versus obserbed aboveground biomass, 
derived from lidar and forest inventory plots. See Table S1 for 
definitions of lidar metrics
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biomass accumulation after 33 years in the entire dataset, a pat-
tern that is less apparent when looking at each substrate individ-
ually (Figure 4d).

Prior land use also influenced biomass accumulation in second- 
growth forests. Forests that recovered after coffee had 13– 45% more 
biomass than those that recovered after pasture (p < .0001; Figure 4b). 

F I G U R E  3  Lidar- derived estimates of aboveground biomass at 26- m pixel resolution. Snapshots include (1) limestone; (2) El Yunque 
National Forest; (3) highly fragmented forest in the central part of the island
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The only exception to this pattern was for the youngest age class 
(11 years, p- value = .263), but the sample size of younger forests fol-
lowing coffee was very low (n = 10 pixels) compared to other age/past 
land use combinations (n = 704 to 46,442 pixels). Biomass accumula-
tion following other land uses (class “Other,” including mixed agricul-
ture, sugar cane, hay, and others) was intermediate between coffee 
and pasture (Figure 4b).

Finally, biomass in second- growth forests of Puerto Rico was 
linearly and positively associated (p < .0001) with mean annual pre-
cipitation (Figure 4d), topographic wetness (Figure 4e), and slope 
(Figure 4f), although the positive association between precipitation 
and biomass saturated above approximately 1800 mm yr−1.

To evaluate the controls of forest regrowth we built a multivar-
iate model using the environmental spatial layers. The AIC of the 

spatial regression model was lower than the AIC for the linear model 
(2,486,700 vs 2,613,900), corroborating the use of a spatial regres-
sion model (Table 1). Further, both the spatial regression coefficient 
(ρ) and the simultaneous autoregressive error coefficient (λ) were 
highly significant (p < .00001), again confirming the appropriateness 
of model with both spatial lag and spatial error parameters.

Forest age, precipitation, topographic wetness, and slope all 
had positive direct impacts on biomass, while geological substrate 
and past land use had both positive and negative impacts (Table 1). 
Among geologic substrates, ultramafic had by far the most negative 
direct impact (−10.22 Mg ha−1), while impacts varied slightly among 
the other substrates, from −1.89 Mg ha−1 in submarine basalt and 
chert to 2.15 Mg ha−1 in intrusive (Table 1). Among past land uses, 
coffee had a positive direct impact (5.19 Mg ha−1), while pasture had 

F I G U R E  4  Distribution of biomass with age and across different environmental variables. (a) Biomass accumulation with age including 
the comparison with previous studies in the neotropics; (b) biomass accumulation based on past land use and (c) geologic substrate. (d- f) 
Relationship between biomass and precipitation, topographic wetness index, and slope. Yellow lines in panels d- f are the linear relationships; 
non- linear relationships (in red) are displayed for visualization purposes. The blue color in the background of figures d- f corresponds to the 
number of pixels (i.e., observations)
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a negative impact (−0.82 Mg ha−1). The indirect impacts followed a 
similar pattern as the direct impacts, and these patterns were similar 
to those from the OLS model without a spatial component. Overall, 
the analysis of controls of biomass accumulation from the multivar-
iate spatial model, multivariate OLS model, and visualizations of the 
individual factors provided consistent results showing contributions 
from age, substrate, past land use, and topographic wetness on bio-
mass accumulation in second- growth forests of Puerto Rico.

4  |  DISCUSSION

The integration of airborne lidar data, forest inventory plots, and 
spatial data on environmental and land use factors captured variabil-
ity in biomass accumulation across more than 16,700 ha of second- 
growth forests in Puerto Rico. The large sample in this study, made 
possible based on high- density airborne lidar data, revealed complex 
spatial patterns of aboveground biomass, especially in older for-
ests (≥53 years). Variability in aboveground biomass by forest age, 
geologic substrate, past land use, and topography underscores the 
complexity of natural and anthropogenic influences on forest recov-
ery following land abandonment. Human- dominated landscapes are 
messy. Yet, landscape- scale studies of second- growth forests also 
capture important complexity in the rates of biomass accumulation 
needed to inform ecosystem models, forest restoration, and climate 
mitigation efforts.

Forest age is a strong predictor of AGB in second- growth for-
ests, and yet forest age is a difficult parameter to quantify, based on 

inherent challenges for estimating the timing of land abandonment, 
differences in initial conditions, and cumulative impacts of distur-
bance. Overall, the trajectory of biomass accumulation with forest 
age in this study followed the general patterns seen in previous work, 
especially for the period of rapid carbon accumulation in the first 20– 
30 years of regrowth. However, the influence of age uncertainty may 
be more pronounced in older second- growth forests. The airborne 
and satellite remote sensing data used to establish forest age in this 
study have long gaps in coverage (Helmer et al., 2008) that contribute 
to uncertainty in estimates of forest age, and thus on biomass accu-
mulation rates, especially for the older forest classes. Recent studies 
have used dense time series of satellite data to track annual changes 
in forest cover (Schwartz, Aide, Graesser, Grau, & Uriarte, 2020; Silva 
Junior et al., 2020), but these studies primarily target younger second- 
growth forests, since Landsat or comparable data are not available on 
an annual basis before the mid- 1980s. Forest age is also difficult to 
assess in the field. For example, remnant shade trees within second- 
growth forests regenerating after coffee or pasture complicate the 
estimation of forest age, and the presence (or absence) of woody 
vegetation influences initial AGB and forest succession. Finally, the 
cumulative impact of both stand- replacing and non- stand- replacing 
disturbances also introduces uncertainty in estimates of forest age, 
especially for older second- growth forests. Despite the rich archive 
of historic air photos, satellite data, and forest inventory information, 
age since last disturbance is particularly difficult to quantify in Puerto 
Rico, as the island regularly experiences hurricane and tropical- storm 
force winds, and the cumulative structural damages from wind expo-
sure may alter the age– biomass relationship.

TA B L E  1  OLS and spatial regression statistics

OLS Spatial regression

Estimate Estimate Direct Impact Indirect Impact Total Impact

(Intercept) −16.81 −17.21

Age 0.32 0.05 0.07 0.22 0.28

Precipitation 0.02 0.00 0.01 0.02 0.02

Substrate.Intrusive 8.11 1.70 2.15 6.91 9.05

Substrate.Limestone 1.12 0.07 0.08 0.27 0.35

Substrate.Submarine basalt and chert −7.08 −1.49 −1.89 −6.07 −7.96

Substrate.Ultramafic −40.88 −8.08 −10.22 −32.87 −43.09

Substrate.Volcaniclastic −1.91 −0.04 −0.05 −0.17 −0.22

PastLandUse.Coffee 22.93 4.11 5.19 16.71 21.90

PatLandUse.Forest 2.35 0.63 0.79 2.55 3.35

PastLandUse.Pasture −3.06 −0.65 −0.82 −2.63 −3.45

Topographic Wetness Index 5.30 2.51 3.17 10.21 13.38

Slope 1.38 0.51 0.64 2.07 2.72

Additional model statistics RSE: 46.7 Rho: 0.81282, Lambda: −0.31833

Adj. R- squared: 
0.2461

Nagelkerke pseudo- R- squared: 0.54841

AIC: 2613900 AIC: 2486700
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Across Puerto Rico, the role of previous land uses on AGB accu-
mulation in second- growth forests remains visible, even after five 
decades of regrowth. Forests that recovered after coffee had higher 
biomass than forests that recovered after pastures, consistent with 
previous studies in Puerto Rico (Aide, Zimmerman, Herrera, Rosario, 
& Serrano, 1995; Marcano- Vega et al., 2002; Pascarella et al., 2000). 
Coffee plantations have different starting conditions compared to 
pastures. Soil additions such as lime and fertilizer may have acceler-
ated forest growth. Greater initial woody cover may also accelerate 
forest recovery by providing shade (Parrotta, 1992) and perching 
sites for animals that disperse seeds (Wunderle, 1997). Both factors 
may help explain faster biomass accumulation and residual differ-
ences in older forests, especially in areas of former shade coffee 
with a mixture of coffee and broadleaf species at the time of ag-
ricultural abandonment. On the other hand, continued grazing or 
browsing may inhibit the establishment of trees in pastures, slowing 
forest recovery (Helmer et al., 2010). Previous studies in Puerto Rico 
using field plot data indicate that, after 40– 60 years, basal area and 
diversity in second- growth forests are similar to undisturbed sites. 
The large sample of second- growth forests in this study captured 
lingering differences in aboveground biomass among land use cate-
gories on the same substrate after five decades of forest regrowth, 
which warrants further investigation into the selective pressure of 
past land use on forest structure and composition.

Our study also revealed heterogeneous patterns of biomass ac-
cumulation across different substrates. In particular, we found slower 
biomass accumulation on ultramafic substrate, where, unexpectedly, 
biomass was higher in intermediate- aged forests than older forests. 
Ultramafic rocks in Puerto Rico are associated with serpentine soils 
with low nutrient content, resulting in shorter forests (Medina, 
Cuevas, Figueroa, & Lugo, 1994; Porder & Ramachandran, 2013). 
The pattern of intermediate- aged forests having more biomass than 
the oldest forest has also been observed in forest inventory data 
(Helmer et al., 2008). One possible explanation is that the oldest 
forests on ultramafic substrate are on the least productive sites. In 
Puerto Rico, agricultural areas on ultramafic substrate and in cloud 
forests were often the first to be abandoned (Helmer et al., 2008). 
In addition, rates of biomass accumulation were very similar on the 
two most common substrates, limestone and volcaniclastic, despite 
pronounced differences in nutrient availability and water holding 
capacity. This similarity has also been observed in previous work 
with inventory data in Puerto Rico (Helmer et al., 2008; Rivera & 
Aide, 1998). One possible explanation is that historic deforestation 
in the karst region was concentrated in valleys. These valley bottoms 
are more protected from storms, and the rugged topography allows 
water and organic matter to accumulate in valley sites, creating more 
suitable conditions for plant growth than other topographic posi-
tions (Muscarella, Kolyaie, Morton, Zimmerman, & Uriarte, 2020; 
Rivera & Aide, 1998). Further, we also found the plateau in biomass 
accumulation appears after 33 years based on the full dataset was 
less visible when looking at each substrate individually. This result 
underscores the need to capture landscape heterogeneity to accu-
rately predict the potential for reforestation to contribute to climate 

change mitigation, including variability in forest recovery on differ-
ent substrates.

Biomass also increased with precipitation, topographic wet-
ness, and slope. Together, these three variables capture conditions 
needed to understand site conditions associated with water deficits 
and waterlogged soils. Some of this pattern may relate to land use. 
For example, coffee plantations were commonly established in wet-
ter regions of Puerto Rico, and steep slopes were typically aban-
doned before flatter areas. Overall, however, positive relationships 
between biomass and precipitation, topographic wetness (repre-
sented in our study by the topographic wetness index, TWI), and 
slope follows the pattern found in other tropical regions (Becknell, 
Kissing Kucek, & Powers, 2012; Lewis et al., 2013; Malhi et al., 2006; 
Saatchi, Houghton, Dos Santos Alvalá, Soares, & Yu, 2007). Higher 
rainfall or water availability, measured as TWI, alleviates growth 
constraints up to the point where soils are waterlogged (Muscarella 
et al., 2020). Waterlogged conditions are less common in sloped en-
vironments, hence the positive association between biomass and all 
three factors.

Overall, we found that biomass in second- growth forests of 
Puerto Rico was 34% lower than other Neotropical forests of sim-
ilar ages. In addition to the combined influence of prior land use, 
substrate, and topography, as noted above, factors related to distur-
bances and methodology likely contribute to this difference. First, 
demographic factors such as time since disturbance contribute to 
the unique stature, composition, and biomass of forests in Puerto 
Rico (Brokaw & Grear, 1991; Brokaw & Walker, 1991). Puerto Rican 
forests regularly experience wind events, including hurricanes and 
tropical storms, and cumulative structural damages from these non- 
stand- replacing disturbances are one factor that likely limits height 
growth and biomass accumulation. Age- related mortality is another 
demographic factor that may explain the similarity in biomass among 
forests of intermediate ages. The degree to which synchronized 
waves of land abandonment (Helmer et al., 2008) precipitate syn-
chronous mortality of pioneer tree species is unknown. Stratification 
of FIA plot data by age may allow for a more detailed investigation of 
changes in pioneer tree species abundance and associated declines 
in AGB.

At least three methodological factors may also account for some 
of the difference between biomass in this study and previous as-
sessments, such as Poorter et al. (2016). First, lidar– biomass rela-
tionships between canopy height and biomass saturate in all forest 
types (Longo et al., 2016). However, the FIA plot data in this study 
exhibit a similar saturation in estimated aboveground biomass with 
age, suggesting that the difference is not strictly methodological. 
Second, frequent disturbances in Puerto Rico may result in a more 
rapid saturation of height– biomass relationships than regions with 
fewer storms; indeed, evidence for regional height– diameter re-
lationships (Hunter, Keller, Victoria, & Morton, 2013) point to the 
need for further refinement of allometric relationships use to es-
timate biomass. Differences in allometric models may account for 
some of the difference reported here. For example, even within FIA, 
biomass estimates using the volume- based approach can be lower 
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than those based on local allometric equations (9% lower in our 
case; data not shown). The growing use of terrestrial lidar in forest 
inventory (Moskal & Zheng, 2011) may enable more accurate, 3- D 
estimates of wood volume, an approach that may identify spatial 
and temporal differences in individual tree damage, especially in 
older forests. Third, lidar data in this study covered 16,788 ha, nearly 
120- fold greater area sampled than a regional syntheses, or 4000- 
fold greater sampling than the average chronosequence study (e.g., 
Poorter et al., 2016). This greater sampling covers a broader range 
of forest conditions across the landscape to better capture biomass 
distributions and disturbance dynamics (Fisher, Hurtt, Thomas, & 
Chambers, 2008), especially in human- dominated landscapes.

Long- term studies of second- growth forests regeneration are 
rare in the tropics. We traded space for time to generate a very large 
sample that covered more than 16,000 ha and nearly 100 years. The 
downsides to this trade are the well- known drawbacks of the chrono-
sequence approach. We implicitly assume that the initial conditions 
for regeneration and controlling processes are the same for all time 
periods. This is clearly not true. In earlier time periods, when most 
of the island was deforested, dispersal and seed source availability 
may have presented greater barriers to regeneration than at later 
times. Similarly, abandonment depends upon utility, and all other 
things being equal, less economically productive areas (steep slopes 
and infertile soils) will be abandoned first. These sites deemed un-
suitable for agriculture start their regeneration with a nutrient debt, 
limiting the pace of regeneration (Davidson et al., 2007). Natural and 
anthropogenic disturbances also contribute to the complex reality 
of second- growth forests in human- dominated landscapes. Older 
second- growth tropical forests in other regions face similar condi-
tions, with growing human pressure from rising population, forest 
fragmentation, and increasing frequency of extreme events, in-
cluding intense rainfall events that may contribute to branch loss or 
treefall events. These realities suggest that carbon accumulation in 
second- growth forests may not be as rapid or as permanent as sug-
gested by simple models developed to promote the effectiveness of 
natural climate solutions (e.g., Griscom et al., 2017).

Statistical modeling studies are also subject to limitations. Even 
with 16,000 ha of lidar data coverage, we were underpowered to 
consider rare classes (when stratified by age, substrate, land use, 
and topography), in particular young second- growth forests. Sample 
sizes also limited the ability to consider complex interactions among 
variables. The FIA data in this study are the best available data for 
a range of forest ages and conditions in Puerto Rico. However, FIA 
plots are small, in comparison to other calibration plots for lidar– 
biomass estimation (e.g., Asner et al., 2012), and this increases the 
potential bias because high- biomass plots may be influenced by only 
one or two large trees (Longo et al., 2016; White et al., 2013). In 
addition, field data collection and allometric equations also include 
errors, and we did not explicitly consider the grid cell- level biomass 
uncertainty when we developed the model of biomass controls. 
Thus, this study also highlights the need for more foundational work 
on error propagation, including specific attention to aspects of allo-
metric uncertainty that most strongly influence lidar- based biomass 

models. Finally, the combination of different sources of remotely 
sensed data can improving the mapping of AGB and the under-
standing of successional stages in second- growth tropical forests 
(Hernández- Stefanoni et al., 2020; Velasco- Murguía, del Castillo, 
Rös, & Rivera- García, 2021).

Fine- scale heterogeneity in the biomass of second- growth for-
ests of Puerto Rico underscores the need to consider a broad range 
of factors that influence biomass accumulation. Here, we identi-
fied important controls on biomass accumulation by age, based on 
differences in prior land use, substrate, and topographic position. 
Differences within and across categories were persistent, even 
after an estimated 50+ years of regrowth, highlighting the need 
to account for these specific drivers in ecosystem models. Our 
study highlights the value of airborne lidar for quantifying biomass 
variability in complex tropical landscapes with cumulative impacts 
from both natural and human disturbance processes. Evidence for 
slower biomass accumulation in second- growth forests of Puerto 
Rico has important consequences for the total carbon storage and 
expected climate mitigation benefits of large- scale reforestation 
efforts.
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