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A B S T R A C T

Greenspace is increasingly examined as a low-cost way to increase standardized test scores in public schools.
However, the evidence for this intervention is mixed. One potential explanation is the variety of ways that
greenspace is measured using remotely sensed data. For instance, aggregate measures can be captured from tree,
grass, and shrub cover classifications in high-resolution (1m2) land cover datasets or they can be measured with
normalized difference vegetative index (NDVI) values from sensors at different resolutions (e.g., 30m2 or
250m2). In the current cross-sectional observational study, we tested the relationship between five greenspace
measures and third-grade math and reading standardized tests scores in Maryland public schools (n=668)
around schools and in children's neighborhoods. Low- and high-resolution greenspace measures were highly
correlated with each other, but moderate-resolution measures were not. Multivariate regression models revealed
positive associations between academic performance and low-resolution NDVI measures around schools and in
neighborhoods as well as between performance and tree cover in neighborhoods. These effects were attenuated
when an understudied confounder in this body of literature was included: population density as a measure of
urbanicity. Grass cover showed associations with performance in models adjusted for urbanicity, but the di-
rection of these associations was negative. These findings suggest that the possible association between green-
space and academic performance is complex and tenuous when examined with observational, cross-sectional
study designs in limited geographic regions.

1. Introduction

A growing number of scholars are interested in the relationship
between greenspace and academic performance. The notion is intri-
guing. Investments in tree canopy and other vegetated spaces are low-
cost interventions that might boost student’s standardized test scores,
graduation rates, exam scores, and other forms of academic achieve-
ment.

There are several theories to support this notion. Attention re-
storation theory states that natural landscapes can effortlessly capture
attention and allow cognitive resources to restore (Kaplan, 1995). Stress
Reduction Theory and Scanning for Threats theory indicate that natural
landscapes can be familiar, non-threatening, and stress-buffering be-
cause of people's evolutionary history (Ulrich, 1983) and personal ex-
perience (Browning & Alvarez, 2019). When students are exposed to
chronic stressors at home or schools, their academic performance suf-
fers (Berman et al., 2018; Dixson, Keltner, Worrell, & Mello, 2018;

Durán-Narucki, 2008; Grineski, Clark-Reyna, & Collins, 2016; Welsh,
2001; White et al., 2016). Greenspace may also support self-discipline,
engagement, physical activity, autonomy, and “loose parts” for creative
play while providing calm, quiet, safe, and cooperative social en-
vironments (Kuo, Barnes, & Jordan, 2019).

The empirical evidence on this notion is mixed. On the one hand,
several experimental studies support a causal link between nature ex-
posure and academic performance. Direct exposure shows beneficial
effects on working memory, cognitive flexibility and attentional control
(Stevenson, Schilhab, & Bentsen, 2018) as well as emotional regulation
and time-on-task in classrooms (Kuo, Penner, & Browning, 2018). High
school students perform better on cognitive tasks when randomly as-
signed to green window views (Li & Sullivan, 2016). In Denmark,
teaching curriculum outdoors for at least two hours per week elevates
reading test scores (Otte et al., 2019) and increases motivation to learn
(Bølling, Otte, Elsborg, Nielsen, & Bentsen, 2018) when compared to
teaching entirely indoors. College students randomly assigned to
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window views of greenspace earn higher end-of-semester grades than
students assigned to windows with views of concrete walls (Benfield,
Rainbolt, Bell, & Donovan, 2015).

On the other hand, a review of the studies on standardized forms of
academic performance and school greenspace found inconclusive evi-
dence for this notion (Browning & Rigolon, 2019a). At least two studies
showed negative associations between greenspace and performance
(Beere & Kingham, 2017; Browning, Kuo, Sachdeva, Lee, & Westphal,
2018) and a third showed non-significant associations (Markevych
et al., 2019). Two other studies showed positive associations (Kweon,
Ellis, Lee, & Jacobs, 2017; Leung et al., 2019), and six showed a com-
bination of positive and non-significant findings (Hodson & Sander,
2017; Kuo, Browning, Sachdeva, Lee, & Westphal, 2018; Matsuoka,
2010; Sivarajah, Smith, & Thomas, 2018; Tallis, Bratman, Samhouri, &
Fargione, 2018; Wu et al., 2014).

Studies not captured in Browning and Rigolon's review (2019a) also
provide mixed support for the notion that greenspace is associated with
academic performance. High schools across the United States did not
show statistically significant associations between performance and
tree, total vegetation, or agricultural cover (Hodson & Sander, 2019).
However, students in schools with more tree cover in Portland, OR,
performed better on reading test scores in models not adjusted for ur-
banicity (Donovan, Michael, Gatziolis, & Hoyer, 2018), and students
who spent more time in forested landscapes during childhood earned
higher grades in college (Spero, Balster, & Bajcz, 2018). Another review
of the impacts of outdoor education on academic performance also
found inconclusive evidence that greenspace exposure improves per-
formance (Becker, Lauterbach, Spengler, Dettweiler, & Mess, 2017).

The inconsistent evidence for greenspace supporting academic
performance are likely the result of a multitude of factors. For instance,
different results could stem from different study designs, residual con-
founding, overly simplistic statistical analyses, and varying geographic
regions (Browning & Rigolon, 2019a). One factor that is particularly
worthy of further investigation regards the type of greenspace mea-
surement. Different remote sensing measures of greenspace have been
shown to swing the pendulum in the same population of schools from
negative associations (Browning et al., 2018) to positive associations
(Kuo, Browning et al., 2018). To our knowledge, no studies have di-
rectly compared the sensitivity of results with different measures in the
same sample of schools. The means and variance of greenspace mea-
sures can vary by remote sensor data (Smith, Zhou, Cadenasso, Grove,
& Band, 2010), and greenspace values derived from different datasets
show varying associations with human health (Su, Dadvand,
Nieuwenhuijsen, Bartoll, & Jerrett, 2019; Tsai, Davis, & Jackson, 2019).
Furthermore, small patches of greenspace can only be captured with
higher resolution measures (Markevych et al., 2017), and small
greenspace patches may be important components of children's ex-
posure to nature (Browning & Rigolon, 2019b). Studies comparing
greenspace datasets, including higher-resolution datasets, might pro-
vide the most robust estimates of the possible association between
greenspace and academic performance.

The degree of urbanicity is another potentially important factor
explaining variation amongst greenspace and academic performance
studies. Some benefits of greenspace may be stronger in urban areas,
and others may be stronger in rural areas (Markevych et al., 2017;
Verheij, Maas, & Groenewegen, 2008). Several measures of urbanicity
are readily available, easily calculated from national datasets, and
substitutable (Browning & Rigolon, 2018). Not accounting for the
confounding effects of urbanicity may produce spurious relationships
between greenspace and the outcome of interest. For instance, green-
space measures from coarse-resolution remote sensing datasets may
represent urban density as much as they represent greenspace density
(Grove, Locke, & O’Neil-Dunne, 2014).

The most robust academic performance models should, therefore,
have high-resolution measures of greenspace with urbanicity covariates
(e.g., population or residential density). Few studies have specifically

tested for confounding urbanicity. One study that indirectly examined
urbanicity with high-resolution measures found no benefits of green-
space (Markevych et al., 2019). Another study that found greenspace
benefits academic performance used an ordinal variable with only three
categories of urbanicity (Li, Chiang, Sang, & Sullivan, 2018); as such,
this study may have failed to capture the complexity of a continuous
population gradient. A third study used the percentage of impervious
land cover as a proxy for urbanicity (Hodson & Sander, 2017), and this
proxy may correlate more highly with greenspace cover than with po-
pulation density per se.

In the current study, we seek to better understand the proposed link
between greenspace and academic performance by considering the
impact of greenspace sensor data and the confounding effects of urba-
nicity. Our first objective is to compare remote sensing measures of
greenspace in and around schools to see to what extent these measures
describe different levels of exposure. Our second objective is to examine
associations between different greenspace measures and academic
performance levels—both with and without adjustments for urbanicity.

2. Methods

2.1. Study area

We selected an area of the United States with high-resolution land
cover data and with sufficient numbers of schools across the rural-urban
continuum to test for associations between greenspace and academic
performance. This study area was the State of Maryland. Maryland is
approximately 10,460 miles2 and includes Census tracts comprised of
only three people per km2 as well as tracts comprised of as many as
10,000 people per km2. The state experiences a wide range of climatic
zones that influence the availability and type of greenspace around
schools. The average freeze-free season ranges from 130 days on the
Alleghany Plateau in Garrett County to 230 days in the southern and
central regions of the state (National Climatic Data Center, n.d.).
Similar to the majority of other observational studies on this topic,
Maryland is located at a latitude that represents a temperature climate
with moderate levels of rainfall and primarily deciduous forest cover
(Smith et al., 2010). Studying this ecoregion makes our findings directly
comparable to much of the current body of literature on greenspace and
academic performance, which examined a similar climatic and ecolo-
gical region (Browning & Rigolon, 2019a).

2.2. Data

2.2.1. Greenspace
We considered five greenspace measures. Three came from a high-

resolution (1m2) land cover data set (Chesapeake Conservancy, 2019)
and two were derived from red and infrared wavelengths that were
transformed into normalized difference vegetative index (NDVI) values.

The developers of the land cover dataset used an object-oriented
approach built from Light Detection and Ranging (LiDAR), aerial ima-
gery, orthoimagery, planimetrics, highway, and National Wetlands
Inventory datasets (Chesapeake Conservancy, 2019). We used three
measures from this high-resolution dataset: (1) tree cover, (2) herbac-
eous/low vegetation and shrub cover (hereafter, “grass cover”), and (3)
total vegetation cover. The third measure was the sum of the other two.
The accuracy of land cover classifications across the dataset is 91%, but
the accuracy for these three measures are generally higher: up to 98%
for tree cover (Pallai & Wesson, 2017). Fig. 1 compares the level of
detail (resolution and vegetation type) between the greenspace mea-
sures we used.

The moderate and coarse greenspace measures were calculated as
NDVI values. These range from−1.0 to 1.0, where−1.0 is water; 0.0 is
ice, snow, barren area, or rock; and 1.0 is abundant leafy green vege-
tation. The NDVI measures were retrieved from sensors at different
resolutions: 30m2 Landsat 7 satellite (https://landsat.gsfc.nasa.gov),
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and NASA’s 250m2 Moderate Resolution Imaging Spectroradiometer
(MODIS) Vegetation Indices (https://modis-land.gsfc.nasa.gov.vi.
html). All imagery used to calculate NDVI values were cloud-free and
taken in June or July 2016, when vegetation was fully leafed-out. We
were unable to find cloud-free Landsat images in the mountainous
Garrett, Allegany and Washington Counties, so schools in those counties
were excluded.

High-resolution data (Chesapeake Conservancy, 2019) demon-
strated some regions had open water (“bluespace”). Approximately
15% (n=88) of the included schools had bluespace in the “school
zone” (see description of geographic zones below). In total, bluespace
covered less than 0.5% of the aggregated school zones examined in this
study. To prevent suppressing the abundance of greenspace, we re-
classified negative NDVI values as missing data.

Greenspace measures were calculated in two zones: around the
school and in the school attendance boundaries. Delineation of zones
followed the guidance provided by Kuo, Browning et al. (2018). Each
school was associated with one school attendance boundary (“neigh-
borhood zone”) and one “school zone.” The latter describes the area
corresponding to the student’s experience of greenspace at school and
encompasses the school parcel and a 25m buffer. The former (“neigh-
borhood zone”) describes the greenspace inside the school attendance
boundary but outside the school parcel and its 25m buffer. Attendance
boundaries describe the residential areas where students live and de-
termine which school students attended. In each zone, the percentage of
each of the three high-resolution measures and the average values of
each of the two NDVI sources were calculated using Zonal Statistics in
ArcGIS version 10.2.2 (ESRI, Redlands, CA). We multiplied NDVI values
by 100.0 to make their ranges comparable to high-resolution ranges
(i.e., 0.0 to 100.0).

Non-greenspace spatial data came from three sources. Point data for
schools were retrieved from the Maryland GIS Data Catalog (http://
data.imap.maryland.gov/datasets/maryland-education-facilities-k-
thru-12-education-public-schools). Attendance areas were retrieved
from the National Center for Education Statistics (https://nces.ed.gov).
School parcel polygons were accessed via Maryland Property View
(https://planning.maryland.gov/Pages/OurProducts/DownloadFiles.

aspx) for all counties except Cecil. Cecil county does not make its parcel
data publicly available. Point locations of schools were matched with
parcel polygons to obtain school polygons. Schools were filtered to
include only standard public schools (i.e., not special education,
Montessori, or magnet) and only those that served third-grade students.

We investigated third-grader test scores for several reasons. First,
third-grade (year four in the United Kingdom) consists of students
usually between eight and nine years of age. This age range is parti-
cularly appropriate for studying academic performance at the school-
level since children's academic success beyond third-grade is strongly
predicted by individual-level characteristics (Kieffer, 2011). As such,
school-level analyses from third-grade may be less prone to ecology
fallacy than school-level analyses from later grades. Also, the cognitive
performance of children in earlier grades is not tested with standardized
measures (Kieffer, 2011). Further rationale for selecting third-grade
comes from the fact that these test scores predict future outcomes, in-
cluding high school graduation and college enrollment (Lesnick,
Goerge, Smithgall, & Gwynne, 2010) as well as future earning potential
(Chetty et al., 2011). The selection of third grade test scores is con-
sistent with prior research on greenspace and academic performance, so
results are comparable to several previous studies (i.e., Browning et al.,
2018; Hodson & Sander, 2017; Kuo, Browning et al., 2018; Wu et al.,
2014).

2.2.2. Academic performance data
Math and reading test scores from 2016 were retrieved from the

Maryland School Report Cards (http://reportcard.msde.maryland.gov).
These scores represent the percentage of third-grade students who met
or exceeded PARCC standards in each school (Partnership for
Assessment of Readiness for College and Careers, 2014). These exact
measures or analogous measures (i.e., percentage proficient or ad-
vanced beyond proficiency) have been used in several other papers on
greenspace and academic performance (e.g., Browning et al., 2018;
Kuo, Browning et al., 2018; Kweon et al., 2017).

2.2.3. Covariates
Covariates were selected from past research on greenspace and

Fig. 1. We calculated greenspace in two zones: 25m
buffered school boundaries (“school zones,” see black
polygons) and school attendance boundaries with the
buffered school boundaries erased (“neighborhood
zones,” see purple polygons). In each of these two
zones, we calculated five measures of greenness:
NDVI from satellites with two different resolutions
(250m2 and 30m2) and three high-resolution land
cover classes (trees, grass/shrub, trees, and grass/
shrub combined). *NDVI=normalized difference
vegetative index, a common measure of greenness.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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academic performance (Browning & Rigolon, 2019a) and obtained from
state and national data sources. Attendance rates, the total number of
students in each school (i.e., enrollment), percentage of students who
moved in and out of a school (i.e., mobility), and percentage of students
eligible for free or reduced lunch (i.e., low-income) were obtained from
the same source as the academic performance data. Racial, ethnic, and
gender composition of students, as well as student-to-teacher ratios,
were obtained from the National Center for Education Statistics
(https://nces.ed.gov). Each of these measures was from the 2015–2016
academic year.

Urbanicity was calculated for each U.S. Census tract as the density
of total population per km2 using 2012–2016 American Community
Survey data (United States Census Bureau, 2018). As a sensitivity
analysis, we calculated the number of residential units with the same
data and substituted it for total population (see Analyses below).

2.3. Analyses

First, Pearson correlations were calculated to compare relationships
between all the variables. To compare just the greenspace measures,
one-way ANOVAs were run between the three summative measures
(i.e., 250m2 NDVI, 30m2 NDVI, and total vegetation from the high-
resolution dataset).

Next, linear mixed models were run with either of the two academic
outcomes (math or reading test scores) and at least one measure of
greenspace. For models with summative measures of greenspace, a
single measure was used. For models with non-summative measures
(tree cover and grass cover), multiple measures were used. All models
adjusted for the random effects attributable to the broader social,
geographic, and environmental context of the United States county in
which each school was located.

The initial series of linear mixed models contained all covariates
except for urbanicity. These covariates included percent Asian, percent
Hispanic, attendance rates, mobility rate, enrollment, student-to-tea-
cher ratio, and percent female. To control for levels of disadvantage at a
school and to avoid multicollinearity, two variables related to socio-
economic status were mean-centered and the averages were calculated:
percentage of students who did not identify as White, and percentage of
students who were eligible for free or reduced lunch (Kuo, Browning
et al., 2018). The resulting disadvantage index ranged from −1.0 to
1.0. Greater numbers represented higher percentages of non-White and
low-income students.

The next set of multivariate models were identical to the initial set

but included urbanicity as a covariate. Urbanicity was first measured as
population density (people per km2) and then as residential density
(households per km2). After these models were run, a final set of models
with an interaction term was run. This term represented the potential
for effect modification of greenspace by urbanicity (i.e., population
density * 250m2 NDVI).

Model fit statistics showed assumptions of regression were not
violated. Multicollinearity was not present (VIF values < 2.01). Global
Moran’s I values were used to test for spatial autocorrelation in the
model residuals, and none were found to be statistically significant.
Among the 16 models fit for the main effects of greenspace on academic
performance, Moran’s I ranged from −0.012 to −0.008, with asso-
ciated p-values ranging from 0.071 to 0.91.

Models were run in R Version 3.5.2 (Vienna, Austria). The code for
merging datasets and running analyses accompanies this manuscript, as
do the spreadsheet and spatial datasets.

3. Results

3.1. School characteristics

Complete sets of data were available for 668 schools, and these
schools showed moderate levels of disadvantage. Approximately one-
third of the student populations were White, one-third were Black, and
one-half were eligible for free or reduced lunch (Table 1). The average
student-to-teacher ratio was one teacher per every 17 students. Less
than half of the students met or exceeded math or reading test score
standards. There were 509 schools (72.2% of the sample) classified as
urban (versus rural) as defined by the U.S. Census Bureau cutoff of 1000
people per mile2 (van Dijk & van der Valk, 2007). The aerial coverage
of the school zones ranged from a minimum of 8916m2 to a maximum
of 1,259,319 m2 (mean=99,806m2). The attendance zones ranged
from a minimum of 208,524m2 to a maximum of 595,991,237 m2

(mean= 28,747,005 m2). Bivariate correlations between variables are
available in the Supplemental Materials (Fig. S1).

3.2. Greenspace measure comparisons

Fig. 2 and Table 2 show the distribution of greenspace measures.
Comparisons across school and neighborhood zones showed few dif-
ferences, but there were two notable findings. First, tree cover was
greater in neighborhood zones than in school zones. Second, grass cover
was greater in school zones than in neighborhood zones. Other green-
space means were approximately equal between zones. Also, green-
space measures were positively correlated with each other with two
exceptions; grass cover and tree cover were negatively associated with
one another in both zones (see Supplemental Materials Fig. S1).

Comparisons of the three summative measures of greenspace also
showed differences (Fig. 3). Total vegetation and 250m2 NDVI showed
approximately equal means. In contrast, 30 m2 NDVI showed means
nearly half those of the other two summative measures (Table 2). The
median values for each of the three measures were statistically sig-
nificantly different from each other (see Supplemental Materials, Table
S1), but the distribution of the 30m2 NDVI measure showed lower
averages and a compressed range of values (see ranges in Table 2).

All greenspace measures were negatively correlated with urbanicity
(data not shown). The 250m2 NDVI measures in school zones and
neighborhood zones showed the strongest associations with urbanicity
(r=−0.69 and −0.58, respectively).

3.3. Academic performance models

Bivariate correlations suggested all measures of greenspace were
positively and significantly related to math and reading test scores,
p < .05 (data not shown). However, in multivariate models, only four
out of twenty measures (20%) predicted test scores (see A and C in

Table 1
Characteristics of schools in sample (n=668).

Variable Mean SD Range Skewness

Reading (% meet or exceed) 35.24 21.14 0–87.67 0.31
Math (% meet or exceed) 41.98 22.34 0–90.91 0.1
Disadvantage (index of % non-

White and % low-income)
2.95 0.6 0.46–4.01 −0.92

Low-income (% students
eligible for free-or-reduced
lunch)

49.81 26.8 0 – 100 −0.18

White (% students) 36 31 0 – 96 0.34
Black (% students) 37 31 0 – 99 0.7
Asian (% students) 5.82 8.07 0–49.22 2.64
Hispanic (% students) 16.83 18.46 0.29–91.81 1.89
Attendance (% days attended) 98.65 2.62 89.1–100 −1.58
Mobility (% students moved) 19.49 11.11 0–63.9 0.81
Enrollment (total number of

students)a
511.82 174.42 80–1108 0.32

Ratio (student-to-teacher ratio) 16.83 18.46 0.29 – 91.81 1.9
Female (% students) 48.55 2.6 38.69–59.54 0.03
Density (population per km2 in

census tract)
1690 1691 2.89 – 10,270.11 1.88

a All students in the school, not just third graders
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Fig. 4 as well as Supplemental Materials Tables S2–S5). The coarsest
summative measure of greenspace (250m2 NDVI) was significantly and
positively associated with reading and math scores in school zones and
neighborhood zones. Tree cover in school zones and grass cover in
neighborhood zones were positively associated with reading scores. No
other greenspace measures were related to test scores.

Models adjusting for urbanicity (i.e., population density) showed
attenuated effects of greenspace on academic performance (see B and D
in Fig. 4 as well as Supplemental Materials, Tables S6–S9). In these
models, 250m2 NDVI was no longer associated with math or reading
test scores. Similarly, tree cover was no longer associated with reading

scores. Grass cover, on the other hand, showed negative associations
with performance. Statistically significant negative associations were
found for math scores in neighborhood zones (Std. Beta=−0.09, Std.
95% C.I.=−0.14, −0.03, p= .002) and school zones (Std.
Beta=−0.07, Std. 95% C.I.=−0.14, −0.01, p= .025) as well as
reading scores in neighborhood zones (Std. Beta=−0.042, Std. 95%
C.I.=−0.12, −0.001, p= .043). Models with residential density
showed similar results as models with population density. No other
statistically significant associations between greenspace measures and
academic performance were observed.

Including interaction terms showed little effect modification by
urbanicity. No interaction terms were statistically significant in models
with school zone greenspace measures, p > .05. Only two interaction
terms were statistically significant in models with neighborhood zone
greenspace measures: 30m2 NDVI in math models (Std. Beta= 0.25,
Std. 95% C.I.= 0.01 – 0.49, p= .043) and 30m2 NDVI in reading
models (Std. Beta= 0.25, Std. 95% C.I.= 0.02 – 0.48, p= .035). To
test for the direction of this potential effect modification, we ran models
without interaction terms in subsamples split by the median value of
population density (urban≥ 1255 people per km2, n= 344; not-
urban < 1255 people per km2, n=344). These models suggested
schools in more densely populated areas benefitted from 30m2 NDVI in
neighborhood zones more than schools in less densely populated areas.
However, the associations between greenspace measures and test scores
failed to reach statistical significance in these subsample analyses,
p > .10.

Fig. 2. Distribution of summative measures of greenspace in school zones (A) and neighborhood zones (B). Values above brackets show the results of paired Wilcoxon
tests of differences between measures.

Table 2
Description of greenspace measures around schools and in the neighborhood.

Zone and Variable Mean SD Range Skewness

School
Tree 31.75 16.91 0.55–85.71 0.44
Grass 36.47 14.56 0.34–79.07 0.1
Total Vegetation 68.21 16.01 1.57–95.99 −1.68
30m2 NDVIa 36.57 7.06 5.74–55.14 −1.27
250m2 NDVIa 65.13 12.64 11.67–93.02 −1.23

Neighborhood
Tree 45.07 16.59 1.37–82.4 −0.45
Grass 26.75 12.52 2.65–71.45 1.09
Total Vegetation 71.81 19.62 4.03–98.09 −1.25
30m2 NDVIa 39.45 7.89 8.53–54.54 −1.15
250m2 NDVIa 67.55 12.69 16.55–87.9 −1.47

a NDVI measures were multiplied by 100 to standardize ranges and compare
to other greenspace measures.
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4. Discussion

To examine whether past discrepancies in the literature on green-
space and academic performance were attributable to different remote
sensing datasets and residual confounding, we compared five green-
space measures and their associations with standardized test scores. We
found different sensors and greenspace measures resulted in different
values assigned to school and neighborhood greenspace (Objective 1).
While coarse-resolution measures (250m2 NDVI) were similar to high-
resolution measures of total vegetation, moderate-resolution measures
(30m2 NDVI) were not. We also found beneficial associations of
greenspace were partially attributable to urbanicity (Objective 2).
Coarse-resolution greenness measures predicted academic performance
in initial models, but these associations disappeared when urbanicity
was controlled for. Moreover, high-resolution measures of grass cover
showed scattered negative relationships with performance in models
that controlled for urbanicity.

This is the sixth observational, school-level study that does not
provide strong support for a beneficial relationship between standar-
dized test scores and school greenspace (Beere & Kingham, 2017;
Browning et al., 2018; Hodson & Sander, 2019; Markevych et al., 2019;
Tallis et al., 2018). While some empirical evidence supports greenspace
exposure providing attention restoration (Li & Sullivan, 2016) and in-
creasing college grades (Benfield et al., 2015), the evidence for

greenspace exposure boosting other measures of academic performance
is mixed (Browning & Rigolon, 2019a).

This study is part of another body of literature regarding the in-
fluence of different remote sensing data and their impact of associations
between greenspace and human health and cognitive functioning.
Reviews of the association between greenspace and academic perfor-
mance (Browning & Rigolon, 2019a) and physical health (Browning &
Lee, 2017) show outcomes vary widely by the way greenspace is
measured. Additional evidence comes from individual studies of the
relationships between greenspace and mental and physical health
(Browning & Rigolon, 2018), health care expenditures (Becker,
Browning, Kuo, & Van Den Eeden, 2019), self-reported health (Reid,
Kubzansky, Li, Shmool, & Clougherty, 2018), and life expectancy (Tsai,
Leung, McHale, Floyd, & Reich, 2018). Tree and forest cover generally
show stronger protective effects than total vegetation cover or her-
baceous/grass cover. These findings have been observed in studies of
academic performance (i.e., Kuo, Browning et al., 2018) as well as
studies of self-reported well-being (Zhang & Tan, 2019) and birth out-
comes (Donovan, Gatziolis, Jakstis, & Comess, 2019).

Differences between vegetation types are likely a result of differing
levels of ecosystem service provision and landscape preferences. Trees
provide air filtration and climate amelioration (Vieira et al., 2018) and
heat island mitigation (Eisenman et al., 2019) better than grassy lawns
do. Students find trees more restorative than grassy lawns, so students

Fig. 3. High-resolution (1m2) vegetation cover compared to NDVI from Landsat (30m2) and MODIS (250m2) imagery in school zones (A, B) and neighborhood zones
(C, D).
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may receive more mental and physical health restoration from forested
school yards (Akpinar, 2016; Paddle & Gilliland, 2016). Grass and
herbaceous cover—but not forest cover—are likely to represent un-
maintained vacant lots that attract crime activities and increase stress
levels rather than provide health and well-being benefits (Browning
et al., 2018; Garvin, Cannuscio, & Branas, 2013). Also, different types of
vegetation vary across socio-economic gradients differently. Certain
greenspace types may be more vulnerable to the confounding effects of
socioeconomic status and self-selection bias than others (Mockrin,
Locke, Stewart, Hammer, & Radeloff, 2019).

We found support for the resolution of greenspace measures influ-
encing spatial associations as well. In contrast to research from Europe
and New York City, we found greenspace measures from high-resolu-
tion (1m2) land cover data were very similar to those from coarse-re-
solution (250m2) NDVI data (Reid et al., 2018; Su et al., 2019).
Moreover, we found that coarse-resolution data predicted academic
performance in at least some models while other data rarely predicted
performance. This deviation from past work may be explained by
coarse-resolution data accurately estimating greenspace exposure in

population-based studies with large units of analysis. Also, NDVI data
consists of pixels that ranged from 0 (not at all green) to 1 (completely
green). Moderate-resolution data might produce skewed results if the
regions in which greenspace exposure is being calculated contain ve-
getation that is concentrated in a few pixels. If these pixels contain high
levels of chlorophyll, than regional greenspace levels may be higher
than expected. Coarse-resolution data might be less vulnerable to a few,
highly-vegetated pixels influencing regional greenspace exposure le-
vels. High-resolution data might also be less vulnerable to this bias,
since they calculate regional greenspace exposure from pixels with bi-
nary—not continuous—values. Ultimately, which greenspace measures
correlate with one another is less important than the implications of our
findings paired with past work (Reid et al., 2018; Su et al., 2019). The
selection of remote sensing data may influence the associations be-
tween greenspace exposure and human health or cognitive performance
outcomes.

We recommend future research include sensitivity analyses with a
multitude of greenspace measures to ensure robust results. All remote
sensing measures are limited by the extent to which they accurately

Fig. 4. Coefficient estimates and 95% confidence intervals for greenspace measures regressed on third-grade test scores in Maryland public schools (n= 668) in
models unadjusted for population density (reading scores=A, math scores=C) and in models adjusted for population density (reading scores= B, math
scores=D) in school zones and neighborhood zones. Results are from linear mixed models controlling for levels of disadvantage (an index composed of percent
White and free or reduced lunch eligible students), percent Asian, percent Hispanic, attendance rates, mobility rates, enrollment numbers, student-to-teacher ratios,
percent female, and county random effects. Models with summative measures of greenspace include a single greenspace measure. Models with non-summative
measures (i.e., tree cover and grass cover) include multiple measures. The labels with numeric values (i.e., 250m2, 30m2) indicate resolutions at which NDVI is
measured. Filled-in circles indicate confidence intervals that do not cross zero; these show statistically significant associations between greenspace and academic
performance, p < .05. Significant, positive associations are not present in models adjusted for urbanicity.
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capture lived experience—that is, vegetation experienced from eye-
level rather than seen from overhead. Even the “gold standard” of re-
mote sensing datasets (high-resolution land cover classifications; Su
et al., 2019) fails to capture the vertical character of vegetation (Lu,
Yang, Sun, & Gou, 2019; Seiferling, Naik, Ratti, & Proulx, 2017).
Therefore, street-view imagery should be used in conjunction with re-
mote sensing imagery when possible. Many methods of extracting
greenspace from street-view imagery are being tested, including com-
puter vision algorithms (Seiferling et al., 2017), modified green view
index (Li et al., 2015), imaging processing of pedestrian video (Hong,
Tsin, van den Bosch, Brauer, & Henderson, 2019), Sky View Factor (Lu
et al., 2019), Green Index Extractor (Suppakittpaisarn, Jiang, Slavenas,
& Sullivan, 2018), Treepedia project (http://senseable.mit.edu/
treepedia), and more (for review, see Larkin & Hystad, 2018). Studies
that report associations with coarse-resolution remote sensing green-
space measures should be read with caution unless the confounding
effects of urban fabric characteristics—such as density or sprawl—are
accounted for (Browning & Rigolon, 2018; Frumkin, 2002), or com-
parisons to street-view imagery are made (Lu et al., 2019; Seiferling
et al., 2017).

While we found no clear effect modification by urbanicity, this is
only a single study, and we cannot claim this variable is merely a
covariate rather than a moderator in the relationship between green-
space and academic performance. Students in urban areas are more
likely to be exposed to an array of individual and neighborhood-level
factors that influence academic performance, such as violent crime,
illicit drug use, traffic noise, and air pollution (Berman et al., 2018,
Troy, Morgan Grove, & O'Neil-Dunne, 2012; Radcliff, Crouch, &
Strompolis, 2018). These factors may be inadequately controlled for
with a singular covariate (i.e., population density). We did not find a
statistically significant interaction term between greenspace and urba-
nicity, but a more comprehensive measure may indeed have shown the
association between greenspace and academic performance varies
across the urban-rural spectrum. Further research is needed to clarify
the appropriate selection of greenspace measures and their interaction
with urban form variables in environmental exposure research.

4.1. Limitations

Our study was primarily limited by its focus on a specific geographic
area. Eastern Maryland is relatively densely populated and experiences
a moderate, temperate climate. The findings reported here may not
generalize to other areas with different climates or urban-rural com-
positions, including the few studies in other climates where protective
effects of greenspace have been observed (i.e., Donovan et al., 2018;
Hodson & Sander, 2019; Tallis et al., 2018). Other protective benefits of
some types of greenspace appear to vary by climate (Tsai et al., 2019)
and proximity to specific greenspaces where people recreate (Wu et al.,
2018).

Our study is also limited by its cross-sectional design. Students ex-
perience changes in greenspace around their schools and neighbor-
hoods over the course of an academic year. These cumulative effects
may have a greater effect on mental health and cognitive performance
outcomes than effects of environments captured at a single point in time
(Engemann et al., 2019). Vegetation is also greenest precisely when
school is out of session. For much of the school year in northern lati-
tudes, there may be few green leaves on the trees (Wu et al., 2014).
Cross-sectional measures of “full leaf-on” greenness during summer
months may not necessarily correspond to the children’s lived experi-
ence, at least as it pertains to near-school exposure.

We included several covariates that were found to be significant in
fully adjusted models, but additional variables may further confound
effects. Variables influencing student outcomes also consist of school
safety and neighborhood crime levels (Berman et al., 2018). Exposure
to greenspace is linked to reduced criminal activity (Garvin et al., 2013;
Jansson, Fors, Lindgren, & Wiström, 2013) and aggressive behavior

(Kuo & Sullivan, 2001; Poon, Teng, Wong, & Chen, 2016; Ulrich,
Bogren, Gardiner, & Lundin, 2018). More generally, exposure to
greenspace improves emotional regulation and mental health for chil-
dren (Chawla, 2015; Gascon et al., 2015; Gill, 2014; McCormick, 2017;
Vanaken & Danckaerts, 2018). The link between greenspace and per-
formance may be partially explained by changes in aggression both
inside and outside the school, but such confounding effects were not
controlled for here. Bluespace also has beneficial psychological and
physiological effects (Almanza, Jerrett, Dunton, Seto, & Pentz, 2012;
Bloemsma et al., 2018). Testing for these effects on academic perfor-
mance was not possible due to the limited number of schools with
nearby water. We are unaware of other studies that have explicitly
tested for a relationship between test scores, greenspace, water, and
aggression. Consideration of such factors may further clarify the po-
tential association between greenspace and student outcomes.

5. Conclusion

This paper reinforces the tenuous nature of the link between
greenspace and academic performance. Positive correlations between
greenspace measures attenuated when urbanicity was controlled for,
and greenspace values differed by remote sensing measure used. These
results were limited by the study's ecological design, however. This was
a cross-sectional study in a single state with schools as the unit of the
analysis. Investigation of residual confounding from urbanicity and
other factors (i.e., aggression and water) with a stronger study design
would better determine whether greening interventions could boost
student performance.
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